一种基于字典分解和稀疏表示的鲁棒人脸识别方法

    公开(公告)号:CN106326871B

    公开(公告)日:2019-04-30

    申请号:CN201610744469.5

    申请日:2016-08-26

    Abstract: 本发明属于模式识别领域,特别涉及一种基于字典分解和稀疏表示的鲁棒人脸识别方法。设计字典分解模型从给定的人脸图像训练数据集中把人脸图像中的类特定信息提取出来,然后计算一个映射矩阵来描述类特定信息与原始训练数据之间的映射关系,并根据计算得到的映射矩阵对测试图像进行校正,然后利用主成分分析(PCA)降维,最后通过稀疏表示分类器(SRC)进行识别分类。本发明能够有效地避免SRC识别过程中由于训练数据被污染或者存在遮挡、缺失而产生的识别率大幅降低的问题,能够得到较高且稳定的识别效果。

    一种基于字典分解和稀疏表示的鲁棒人脸识别方法

    公开(公告)号:CN106326871A

    公开(公告)日:2017-01-11

    申请号:CN201610744469.5

    申请日:2016-08-26

    CPC classification number: G06K9/00268 G06K9/00288

    Abstract: 本发明属于模式识别领域,特别涉及一种基于字典分解和稀疏表示的鲁棒人脸识别方法。设计字典分解模型从给定的人脸图像训练数据集中把人脸图像中的类特定信息提取出来,然后计算一个映射矩阵来描述类特定信息与原始训练数据之间的映射关系,并根据计算得到的映射矩阵对测试图像进行校正,然后利用主成分分析(PCA)降维,最后通过稀疏表示分类器(SRC)进行识别分类。本发明能够有效地避免SRC识别过程中由于训练数据被污染或者存在遮挡、缺失而产生的识别率大幅降低的问题,能够得到较高且稳定的识别效果。

Patent Agency Ranking