-
公开(公告)号:CN113127661A
公开(公告)日:2021-07-16
申请号:CN202110376391.7
申请日:2021-04-06
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种基于循环查询扩展的多监督医学图像检索方法,包括:以已知医学图像数据集对卷积神经网络进行训练,获得分类模型;以该分类模型对该已知医学图像数据集进行三元组挖掘,以挖掘出的三元组对该分类模型进行训练,以获得图像检索模型;对于目标医学图像,通过该图像检索模型从该已知医学图像数据集获得检索结果。本发明还涉及一种基于循环查询扩展的多监督医学图像检索系统,以及一种数据处理装置。本发明的多监督医学图像检索方法采用NM三元组挖掘,解决了仅适用标签信息或仅使用相似标签信息不足以满足CBMIR高精度要求的问题,并提出RQE查询扩展方法,进一步提高了医学图像检索的性能,充分利用了检索结果中的信息。
-
公开(公告)号:CN113127661B
公开(公告)日:2023-09-12
申请号:CN202110376391.7
申请日:2021-04-06
Applicant: 中国科学院计算技术研究所
IPC: G06F16/53 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种基于循环查询扩展的多监督医学图像检索方法,包括:以已知医学图像数据集对卷积神经网络进行训练,获得分类模型;以该分类模型对该已知医学图像数据集进行三元组挖掘,以挖掘出的三元组对该分类模型进行训练,以获得图像检索模型;对于目标医学图像,通过该图像检索模型从该已知医学图像数据集获得检索结果。本发明还涉及一种基于循环查询扩展的多监督医学图像检索系统,以及一种数据处理装置。本发明的多监督医学图像检索方法采用NM三元组挖掘,解决了仅适用标签信息或仅使用相似标签信息不足以满足CBMIR高精度要求的问题,并提出RQE查询扩展方法,进一步提高了医学图像检索的性能,充分利用了检索结果中的信息。
-