一种个性化论文推荐方法及其系统

    公开(公告)号:CN103336793A

    公开(公告)日:2013-10-02

    申请号:CN201310230933.5

    申请日:2013-06-09

    Abstract: 本发明公开了一种个性化论文推荐方法及其系统,其中该方法包括:步骤1,利用科研领域中研究人员撰写学术论文的行为特性,挖掘异质学术网络数据,根据所述异质学术网络数据构建训练数据集,并根据所述训练数据集进行训练得到排序学习模型;步骤2,在线构建用户配置,生成用户感兴趣的候选论文集,根据所述候选论文集并基于所述排序学习模型生成论文推荐结果,基于所述论文推荐结果,按照一定方式生成论文推荐返回给用户;步骤3,在线接收用户反馈,并根据不同的用户反馈行为相应地更新所述论文推荐结果。本发明有效地避免了推荐系统初期的“冷启动”问题,保证了推荐结果的准确率和召回率。

    一种个性化论文推荐方法及其系统

    公开(公告)号:CN103336793B

    公开(公告)日:2015-08-12

    申请号:CN201310230933.5

    申请日:2013-06-09

    Abstract: 本发明公开了一种个性化论文推荐方法及其系统,其中该方法包括:步骤1,利用科研领域中研究人员撰写学术论文的行为特性,挖掘异质学术网络数据,根据所述异质学术网络数据构建训练数据集,并根据所述训练数据集进行训练得到排序学习模型;步骤2,在线构建用户配置,生成用户感兴趣的候选论文集,根据所述候选论文集并基于所述排序学习模型生成论文推荐结果,基于所述论文推荐结果,按照一定方式生成论文推荐返回给用户;步骤3,在线接收用户反馈,并根据不同的用户反馈行为相应地更新所述论文推荐结果。本发明有效地避免了推荐系统初期的“冷启动”问题,保证了推荐结果的准确率和召回率。

    一种学者重名的消歧方法及其系统

    公开(公告)号:CN104111973B

    公开(公告)日:2017-10-27

    申请号:CN201410269979.2

    申请日:2014-06-17

    Abstract: 本发明公开了本发明提供一种学者重名的消歧方法,包括:分类模型建立步骤和迭代消歧步骤;其中,分类模型建立步骤为基于异质学术网络数据,通过标注获取标注数据集,并基于标注数据集,构建文档对二元分类的训练数据集,并基于训练数据集采用分类算法进行二元分类模型训练,得到文档对二元分类模型;迭代消歧步骤为基于二元分类模型,采用迭代分类算法对需要消歧的数据集合进行迭代判别,得到最终对应真实学者的聚团,实现学者重名的消歧处理。本发明还公开了一种学者重名的消歧系统。

    一种学者重名的消歧方法及其系统

    公开(公告)号:CN104111973A

    公开(公告)日:2014-10-22

    申请号:CN201410269979.2

    申请日:2014-06-17

    CPC classification number: G06F17/3071 G06F17/30699

    Abstract: 本发明公开了一种学者重名的消歧方法,包括:分类模型建立步骤和迭代消歧步骤;其中,分类模型建立步骤为基于异质学术网络数据,通过标注获取标注数据集,并基于标注数据集,构建文档对二元分类的训练数据集,并基于训练数据集采用分类算法进行二元分类模型训练,得到文档对二元分类模型;迭代消歧步骤为基于二元分类模型,采用迭代分类算法对需要消歧的数据集合进行迭代判别,得到最终对应真实学者的聚团,实现学者重名的消歧处理。本发明还公开了一种学者重名的消歧系统。

Patent Agency Ranking