-
公开(公告)号:CN104281572A
公开(公告)日:2015-01-14
申请号:CN201310271950.3
申请日:2013-07-01
Applicant: 中国科学院计算技术研究所
IPC: G06F17/30
CPC classification number: G06K9/6211 , G06K9/4676 , G06K2209/21
Abstract: 本发明公开了一种基于互信息的目标匹配方法及其系统,该方法包括:步骤1,将查询图像和参考图像的特征拼接在一起;步骤2,将拼接后的特征对按照类别组成对应至类别下的SET特征集合,每个类别对应一个SET特征集合,SET特征集合中包含查询图像与每个类别的参考图像组成的特征对;步骤3,使用互信息表征SET特征集合与其类别标签之间的关系,通过对互信息的计算,得到目标匹配类别。该方法充分利用了gallery中的多张图片信息提高匹配精度和性能。
-
公开(公告)号:CN104200218A
公开(公告)日:2014-12-10
申请号:CN201410406317.5
申请日:2014-08-18
Applicant: 中国科学院计算技术研究所
Abstract: 本发明公开了一种基于时序信息的跨视角动作识别方法及系统,本发明涉及模式识别领域技术。该方法包括检测视频的感兴趣点,提取该感兴趣点的运动强度,该视频包括:源视角视频和目标视角视频;根据该视频的该时序信息将该运动强度进行时序积累,获得该视频的运动特征描述;根据该运动特征描述和该源视角视频的源粗粒度标注信息,对该目标视角视频进行粗粒度标注,获得目标粗粒度标注信息;根据该源粗粒度标注信息和该目标粗粒度标注信息,通过度量学习方法,对该源视角视频和该目标视角视频进行度量学习,获得跨视角度量方法;通过该跨视角度量方法对该目标视角视频中的动作进行动作分类,以完成跨视角的动作识别。
-
公开(公告)号:CN104281572B
公开(公告)日:2017-06-09
申请号:CN201310271950.3
申请日:2013-07-01
Applicant: 中国科学院计算技术研究所
IPC: G06F17/30
Abstract: 本发明公开了一种基于互信息的目标匹配方法及其系统,该方法包括:步骤1,将查询图像和参考图像的特征拼接在一起;步骤2,将拼接后的特征对按照类别组成对应至类别下的SET特征集合,每个类别对应一个SET特征集合,SET特征集合中包含查询图像与每个类别的参考图像组成的特征对;步骤3,使用互信息表征SET特征集合与其类别标签之间的关系,通过对互信息的计算,得到目标匹配类别。该方法充分利用了gallery中的多张图片信息提高匹配精度和性能。
-
公开(公告)号:CN101866429A
公开(公告)日:2010-10-20
申请号:CN201010195819.X
申请日:2010-06-01
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种多运动目标动作行为识别的训练方法,包括:从视频数据中提取每个运动目标的运动轨迹信息;为运动目标的运动轨迹信息分层,在各个所述层次上为多运动目标动作行为的运动模式建模;综合所述视频中的全局和局部的运动信息对所述运动模式的模型进行特征描述;所述特征至少包括使用高斯过程描述运动轨迹的三维超参数向量;根据特征训练分类器。本发明还提出了多运动目标动作行为识别方法,该方法利用训练方法得到的分类器实现视频中多运动目标动作行为的识别。本发明从概率角度使用高斯过程来表述目标的运动轨迹,从三个粒度层次上对多人行为模式进行建模提取特征,使得对多人行为的表述更符合实际。
-
公开(公告)号:CN104200218B
公开(公告)日:2018-02-06
申请号:CN201410406317.5
申请日:2014-08-18
Applicant: 中国科学院计算技术研究所
Abstract: 本发明公开了一种基于时序信息的跨视角动作识别方法及系统,本发明涉及模式识别领域技术。该方法包括检测视频的感兴趣点,提取该感兴趣点的运动强度,该视频包括:源视角视频和目标视角视频;根据该视频的该时序信息将该运动强度进行时序积累,获得该视频的运动特征描述;根据该运动特征描述和该源视角视频的源粗粒度标注信息,对该目标视角视频进行粗粒度标注,获得目标粗粒度标注信息;根据该源粗粒度标注信息和该目标粗粒度标注信息,通过度量学习方法,对该源视角视频和该目标视角视频进行度量学习,获得跨视角度量方法;通过该跨视角度量方法对该目标视角视频中的动作进行动作分类,以完成跨视角的动作识别。
-
公开(公告)号:CN101866429B
公开(公告)日:2012-09-05
申请号:CN201010195819.X
申请日:2010-06-01
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种多运动目标动作行为识别的训练方法,包括:从视频数据中提取每个运动目标的运动轨迹信息;为运动目标的运动轨迹信息分层,在各个所述层次上为多运动目标动作行为的运动模式建模;综合所述视频中的全局和局部的运动信息对所述运动模式的模型进行特征描述;所述特征至少包括使用高斯过程描述运动轨迹的三维超参数向量;根据特征训练分类器。本发明还提出了多运动目标动作行为识别方法,该方法利用训练方法得到的分类器实现视频中多运动目标动作行为的识别。本发明从概率角度使用高斯过程来表述目标的运动轨迹,从三个粒度层次上对多人行为模式进行建模提取特征,使得对多人行为的表述更符合实际。
-
-
-
-
-