基于图表示学习的身份保持对抗训练方法、装置、介质

    公开(公告)号:CN114418060A

    公开(公告)日:2022-04-29

    申请号:CN202111588857.6

    申请日:2021-12-23

    Abstract: 本发明提供了一种基于图表示学习的身份保持对抗训练方法、装置、介质,所述方法包括:获取训练场景的图数据,定义图数据的每一个节点为用于表征训练场景的一个原样本,定义原样本的样本身份信息;生成每一个原样本对应的对抗样本;通过为对抗样本添加身份保持约束,将对抗样本保持原样本的样本身份信息;将对抗样本作为第一输入变量,输入至初始图表示学习模型,执行身份保持对抗训练;更新初始图表示学习模型,得到目标图表示学习模型,利用目标图表示学习模型预测训练场景中所述原样本在不同图挖掘任务下的输出。该方法将对抗样本与原样本保持相同的样本身份信息,提升了图表示学习在图结构数据分析中的精度,具有一定的普适性。

    基于位置学习图卷积神经网络的图分类方法及系统

    公开(公告)号:CN113128587A

    公开(公告)日:2021-07-16

    申请号:CN202110413687.1

    申请日:2021-04-16

    Abstract: 本发明提出一种基于位置学习图卷积神经网络的图分类方法和系统,本发明目的是解决上述现有图分类方法启发式地对图中节点进行排序、选择的过程导致重要结构丢失和提取不到启发式规则下的关键结构等问题。具体来说,本发明提出了一种基于位置学习卷积神经网络的图分类方法,核心思想是通过为图上每个节点学习对应的位置,进而得到整个图的表示。这种端到端的建模方式有效避免了对节点进行排序、选择和丢弃的过程,不仅提升了图分类的准确率,而且保证了对关键结构的有效提取。

Patent Agency Ranking