-
公开(公告)号:CN116595407A
公开(公告)日:2023-08-15
申请号:CN202310388963.2
申请日:2023-04-12
Applicant: 中国科学院计算技术研究所
IPC: G06F18/24 , G06F18/214 , G06F18/25 , G06F40/289 , G06N3/0455 , G06N3/08
Abstract: 本发明提出一种基于标签序列一致性建模的事件论元检测方法及系统。主要包括词序列语义编码、词标签序列标注、易错标签序列生成、对比学习正则化。词序列语义编码对预处理后的词采用BERT与训练语言模型进行语义表示学习,并将事件类型信息融入表示向量中;词标签序列标注使用全连接网络来对每个词对应的标签概率分布做出预估;易错标签序列生成则是根据一定策略按照词标签序列概率分布生成易错标签序列;对比学习正则化则是基于易错标签序列和正确标签序列的对比学习构建正则化损失,提高词序列标签的一致性。
-
公开(公告)号:CN117149940A
公开(公告)日:2023-12-01
申请号:CN202310942975.5
申请日:2023-07-28
Applicant: 中国科学院计算技术研究所
IPC: G06F16/31 , G06F16/35 , G06F16/332 , G06F40/30 , G06F40/126 , G06N3/04 , G06N3/047 , G06N3/08
Abstract: 本发明提出一种事件论元抽取方法、装置,方法包含:分别对训练数据、事件类型进行编码,得到触发词上下文语义表示、事件类型的表示,并将两者表示交互,得到含事件类型信息的触发词表示,并预测事件类型;生成对应事件类型的论元抽取问题,并将待抽取文本与论元抽取问题拼接编码,得到标签的上下文语义表示、待抽取句子各个词的上下文语义表示、论元角色的上下文语义表示;将标签的上下文语义表示、待抽取句子中的各个词的上下文语义表示分别与需要抽取的论元角色的上下文语义表示拼接后,输入判别网络,分别得到判别概率、标注概率;结合判别概率和标注概率确定最终论元角色对应的抽取结果。该方法提高了事件抽取性能。
-
公开(公告)号:CN114021566A
公开(公告)日:2022-02-08
申请号:CN202111268377.1
申请日:2021-10-29
Applicant: 中国科学院计算技术研究所
IPC: G06F40/295 , G06F16/36 , G06F16/35 , G06N3/08
Abstract: 本发明提出一种开放域文本的实体关系抽取方法和系统,包括:获取已标注的文本作为训练数据,实体识别抽取训练数据中所有命名实体和名词短语,并对其进行数据增强;以增强后的数据为输入,训练神经网络模型,得到实体关系分类模型;统计增强后的数据中各命名实体和名词短语出现的词频,并将词频大于预设值的命名实体和名词短语标记为过滤词汇;获取开放域文本及其对应的头实体,抽取开放域文本中除过滤词汇以外的命名实体和名词短语并输入实体关系分类模型,得到开放域文本的实体关系。通过有效的数据增强策略,无需增加额外的成本,有效解决由于候选尾实体带来的噪音问题导致的实体关系识别在实际应用中效果不佳的问题。
-
公开(公告)号:CN116595406A
公开(公告)日:2023-08-15
申请号:CN202310385316.6
申请日:2023-04-12
Applicant: 中国科学院计算技术研究所
IPC: G06F18/24 , G06F18/214 , G06F16/23 , G06F40/289 , G06F18/25 , G06F17/16 , G06N3/0455 , G06N3/08
Abstract: 本发明提出一种基于角色一致性的事件论元角色分类方法及系统,采用图神经网络结构,将每个论元的预估角色概率分布融入事件触发词与事件论元的关联特征建模中,通过在触发词与各论元连接的星形图上进行多阶图神经网络交互,使得每个论元感知其他论元的角色信息,从而提高事件内所有论元角色整体的一致性。
-
公开(公告)号:CN111897908A
公开(公告)日:2020-11-06
申请号:CN202010398752.3
申请日:2020-05-12
Applicant: 中国科学院计算技术研究所
IPC: G06F16/31 , G06F16/35 , G06F16/36 , G06F40/211 , G06F40/289 , G06F40/295 , G06N3/04
Abstract: 本发明提出一种融合依存信息和预训练语言模型的事件抽取方法及系统,包括以句子的依存句法树为输入,利用使用图卷积神经网络学习依存句法特征,并加入依存关系预测任务,通过多任务学习的方式捕捉更重要的依存关系,最后使用BERT预训练语言模型增强底层句法表达,完成中文句子的事件抽取。由此本发明对事件抽取任务下触发词抽取和论元抽取的性能均有所提高。
-
公开(公告)号:CN117194672A
公开(公告)日:2023-12-08
申请号:CN202310896725.2
申请日:2023-07-20
Applicant: 中国科学院计算技术研究所
IPC: G06F16/36 , G06F40/211 , G06F40/258 , G06F40/30 , G06N5/025
Abstract: 本发明提出一种角色感知的篇章主题事件论元抽取方法、装置,方法包括:根据已知篇章主题事件的事件类型获得该事件类型的篇章主题事件的论元角色信息;对目标文章分别进行分句、提取标题,得到分句集合、事件标题,所述论元角色信息、事件类型、以及事件标题构成事件相关信息;利用所述事件相关信息、以及分句集合构建论元角色感知图,进行事件相关句检测,得到篇章主题事件相关句子集合;将所述篇章主题事件相关句子集合作为输入,对每个论元角色构建问题,预测出所述篇章主题事件相关句子集合中的所有候选论元,从所述候选论元中筛选出目标论元。该方法提升了模型效果的同时保持了模型的灵活性。
-
公开(公告)号:CN111897908B
公开(公告)日:2023-05-02
申请号:CN202010398752.3
申请日:2020-05-12
Applicant: 中国科学院计算技术研究所
IPC: G06F16/31 , G06F16/35 , G06F16/36 , G06F40/211 , G06F40/289 , G06F40/295 , G06N3/04
Abstract: 本发明提出一种融合依存信息和预训练语言模型的事件抽取方法及系统,包括以句子的依存句法树为输入,利用使用图卷积神经网络学习依存句法特征,并加入依存关系预测任务,通过多任务学习的方式捕捉更重要的依存关系,最后使用BERT预训练语言模型增强底层句法表达,完成中文句子的事件抽取。由此本发明对事件抽取任务下触发词抽取和论元抽取的性能均有所提高。
-
-
-
-
-
-