-
公开(公告)号:CN111046920A
公开(公告)日:2020-04-21
申请号:CN201911152246.X
申请日:2019-11-22
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种训练食品图像分类模型的方法及图像分类方法,所述方法包括:分别构建多尺度的食品原材料神经网络以及多尺度的食品类别神经网络,对目标图像进行多尺度划分;对于目标图像的每种类型特征,分别进行多尺度融合,对于融合后的三种类型特征进行融合;将融合后的特征输入到基于融合特征的分类器进行分类。本发明创新性地提出了高级食品语义分布和深度视觉特征的互补性融合,并且进一步将原材料属性信息与高级食品语义分布和深度视觉特征进行融合,解决了食品图像的非刚性结构和几何变形问题,更加有利于食品图像的识别。并且,本发明通过多尺度融合方式,弥补了食品图像不具备空间排列特性的缺陷,最大限度地提高了分类性能。
-
公开(公告)号:CN111159539A
公开(公告)日:2020-05-15
申请号:CN201911251785.9
申请日:2019-12-09
Applicant: 中国科学院计算技术研究所
IPC: G06F16/9535 , G16H20/60
Abstract: 本发明提出一种基于多模态信息关联分析的食物推荐方法,包括:根据用户的饮食需求和饮食范围生成第一模态信息;根据食物的自然属性和附加属性生成第二模态信息;根据该用户的实时身体状况和饮食环境状况生成第三模态信息;对该第一模态信息、该第二模态信息和该第三模态信息进行关联性分析,生成针对该用户的食物推荐结果。
-
公开(公告)号:CN111159539B
公开(公告)日:2023-09-22
申请号:CN201911251785.9
申请日:2019-12-09
Applicant: 中国科学院计算技术研究所
IPC: G06F16/9535 , G16H20/60
Abstract: 本发明提出一种基于多模态信息关联分析的食物推荐方法,包括:根据用户的饮食需求和饮食范围生成第一模态信息;根据食物的自然属性和附加属性生成第二模态信息;根据该用户的实时身体状况和饮食环境状况生成第三模态信息;对该第一模态信息、该第二模态信息和该第三模态信息进行关联性分析,生成针对该用户的食物推荐结果。
-
-