-
公开(公告)号:CN117746184A
公开(公告)日:2024-03-22
申请号:CN202311795114.5
申请日:2023-12-25
Applicant: 中国科学院计算技术研究所
IPC: G06V10/774 , G06V10/764 , G06V10/77 , G06V10/44 , G06N3/045 , G06N3/0495 , G06N3/096
Abstract: 本发明提供了一种图像分类模型的增量训练方法,所述方法包括:S1、采用上一次增量训练得到的图像分类模型作为当前轮初始图像分类模型;所述图像分类模型包括特征提取器和分类器,所述特征提取器用于提取图像数据的特征向量,所述分类器用于根据特征向量进行图像分类;S2、采用新训练集和旧训练集训练所述步骤S1中得到的初始图像分类模型至收敛,在训练过程中采用预设的总损失函数更新模型参数,所述总损失包括交叉熵损失和对比损失,所述对比损失是基于新训练集和旧训练集中的所有正对和负对计算。本发明的技术方案通过在训练中采用了包括基于图像的特征向量和类的特征向量的构建的正对和负对的对比损失,从而缓解了增量学习中的灾难性遗忘问题。
-
公开(公告)号:CN117541876A
公开(公告)日:2024-02-09
申请号:CN202311725379.8
申请日:2023-12-15
Applicant: 中国科学院计算技术研究所
IPC: G06V10/764 , G06V10/774 , G06V10/778
Abstract: 本发明提供了一种图像分类模型以及基于类别增量对模型训练的方法,所述图像分类模型包括:嵌入模块,其用于对输入的图像进行嵌入处理,以得到所述图像对应的嵌入向量;提示参数生成模块,其用于根据所述嵌入向量生成一组可学习的提示参数集合;融合模块,其用于将所述嵌入向量和所述可学习的提示参数向量集合进行融合,得到融合向量;特征提取模块,其用于根据所述融合向量提取所述图像对应的特征向量;分类模块,其用于根据提取的特征向量对所述图像进行分类,得到所述图像对应的分类结果。
-