脑部医学影像中动脉瘤的自动检测方法及系统

    公开(公告)号:CN112419282A

    公开(公告)日:2021-02-26

    申请号:CN202011349402.4

    申请日:2020-11-26

    Abstract: 本发明公开了一种脑部医学影像中动脉瘤的自动检测方法及系统,该方法包括以下步骤:1)采集训练集脑MRA图像并进行血管区域提取,对完成血管区域提取后的图像进行动脉瘤区域标注;2)构建三维全卷积神经网络并进行网络模型训练;3)对待检测的脑MRA图像进行血管区域提取;4)采用三维全卷积神经网络对完成血管区域提取后的图像进行动脉瘤检测。本发明所采用的血管提取方法不仅适用于正常解剖结构的血管,对于有动脉瘤、囊肿等解剖结构变异或正常生理结构变异,均能够实现较好的分割效果;本发明的改进的3DUnet网络模型,能够减少3DUnet训练时需要优化的参数数量,可加快训练、检测速度,提升检测敏感度。

    脑部医学影像中动脉瘤的自动检测方法及系统

    公开(公告)号:CN112419282B

    公开(公告)日:2024-01-23

    申请号:CN202011349402.4

    申请日:2020-11-26

    Abstract: 本发明公开了一种脑部医学影像中动脉瘤的自动检测方法及系统,该方法包括以下步骤:1)采集训练集脑MRA图像并进行血管区域提取,对完成血管区域提取后的图像进行动脉瘤区域标注;2)构建三维全卷积神经网络并进行网络模型训练;3)对待检测的脑MRA图像进行血管区域提取;4)采用三维全卷积神经网络对完成血管区域提取后的图像进行动脉瘤检测。本发明所采用的血管提取方法不仅适用于正常解剖结构的血管,对于有动脉瘤、囊肿等解剖结构变异或正常生理结构变异,均能够实现较好的分割效果;本发明的改进的3DUnet网络模型,能够减少3DUnet训练时需要优化的参数数量,可加快训练、检测速度,提升检测敏感度。

Patent Agency Ranking