-
公开(公告)号:CN113640933A
公开(公告)日:2021-11-12
申请号:CN202111062011.9
申请日:2021-09-10
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G02B7/00
Abstract: 本发明涉及光学笼式系统技术领域,具体涉及一种光学用笼杆、光学笼式单元及光学笼式系统。笼杆垂直于其轴线方向开设有若干第一沉头孔。光学笼式单元包括至少三根光学用笼杆和至少两个笼板;笼板的边角开设有与第一沉头孔配合的第一螺纹孔;笼杆和笼板之间通过第一沉头螺钉连接并围成闭合结构。笼杆垂直于其轴线方向开设若干第一沉头孔,允许采用沉头孔将笼杆连接到笼板上,将点接触改为面接触,能够提高笼杆和笼板之间的预紧力,锁紧牢靠,提高光学组件的安装精度及光路的共轴性。同时,相比于现有的外加压板的技术方案,本发明直接在笼杆上开孔,能够大大减小光学笼式系统的安装体积,使光学系统结构简单。
-
公开(公告)号:CN109596587B
公开(公告)日:2021-04-02
申请号:CN201811519337.8
申请日:2018-12-12
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G01N21/64
Abstract: 本发明提供双层同时成像的光学系统,包括激光器、耦合器、平面反光镜、第一透镜、二向色镜、显微物镜、分光板、第二透镜、第一CCD相机、第三透镜、第二CCD相机。本发明还涉及双层同时成像的光学系统的图像处理方法、存储介质、电子设备。本发明通过激光器激被测物上荧光剂的碱基发出不同波段的荧光,经过光学系统调制后在两个CCD相机上同时对双层被测物成像。本发明能够对带有两层微流道结构的生物芯片双层同时成像,缩短了成像周期,提高了成像效率,光学系统的整体结构简单且易于搭建,并能够根据CCD相机捕获的图像恢复所测物面图像,确保了成像结果的质量。
-
公开(公告)号:CN106290277B
公开(公告)日:2019-05-14
申请号:CN201610640428.1
申请日:2016-08-08
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G01N21/64
Abstract: 本发明公开一种测量单分散上转换纳米荧光微粒寿命的装置及方法,该装置包括:双光子显微镜组件以及电气控制组件;双光子显微镜组件包括:激光器、多个光学镜、普克尔盒、二维振镜扫描模块以及光电倍增管,激光器发出光束,经过光学镜和普克尔盒后进入二维振镜扫描模块对样品进行二维扫描,而样品受激产生的荧光信号通过光电倍增管采集;电气控制组件用于控制双光子显微镜组件工作。本发明一种测量单分散上转换纳米荧光微粒寿命的装置及方法,对单分散状态的UCNPs材料进行了荧光成像和荧光寿命测量,使用时域法测量得到的数据直观、处理简便。
-
公开(公告)号:CN106226894A
公开(公告)日:2016-12-14
申请号:CN201610640404.6
申请日:2016-08-08
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G02B21/00
CPC classification number: G02B21/002 , G02B21/008
Abstract: 本发明公开了一种双光子硬件同步控制装置,其包括:激光器、普克尔盒、二维振镜扫描模块、光电倍增管、数据采集卡以及主控装置;激光器发出光束,光束通过普克尔盒后进入二维振镜扫描模块,光束经过物镜聚焦于样品面上,二维振镜扫描模块对样品面进行逐点扫描,样品受激产生荧光信号聚焦于光电倍增管上,数据采集卡对光电倍增管上的信号进行采集,并发送给主控装置,主控装置与普克尔盒、二维振镜扫描模块以及数据采集卡连接,主控装置为普克尔盒、二维振镜扫描模块以及数据采集卡提供同步触发信号。本发明一种双光子硬件同步控制装置可以有效提高成像速度的同时消除共振振镜非线性对成像质量的影响。
-
公开(公告)号:CN111145089B
公开(公告)日:2023-06-16
申请号:CN201911129196.3
申请日:2019-11-18
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种高保真图像重构方法、系统、计算机设备和存储介质,方法包括:读取SIM图像;生成或读取测量PSF;估计结构光条纹参数;利用频谱优化方法重构高保真SIM超分辨率图像。系统包括:图像采集模块、参数估计模块、(PSF生成模块)、图像重构模块。计算机设备和存储介质通过执行计算机程序能够实现上述方法过程。本发明能有效解决SIM超分辨图像的伪影问题,实现SIM超分辨图像的高保真重构,也可极大提高2D‑SIM技术的轴向层切能力,使2D‑SIM技术获得可媲美3D‑SIM技术的层切能力,有效拓展2D‑SIM技术的应用场景。此外,本发明使用理论生成PSF替代复杂的PSF测量过程,仍能重构出高保真SR‑SIM超分辨图像。本发明适用于几乎所有的基于结构光照明技术原理SIM系统的数据处理。
-
公开(公告)号:CN111650739B
公开(公告)日:2022-06-03
申请号:CN202010434454.5
申请日:2020-05-21
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种基于DMD的单帧曝光快速三维荧光成像系统及方法,系统包括DMD双侧照明模块,用于产生两束不同波长的光并分别从不同的方向入射至DMD,生成互补的条纹光;双色荧光激发模块,用于接收互补的条纹光,激发样品上的双色荧光,生成携带双色荧光的条纹光;双色分画幅成像模块,用于将不同波长的携带双色荧光的条纹光成像至相机靶面的不同位置,形成双色图像;重构模块,用于实现去除离焦信息。本发明通过单次曝光、单次采集即可以实现结构光照明三维层切成像;此外,采用DMD投影,提高投影速度和投影条纹的精度,进而提高了三维成像的速度和精度。
-
公开(公告)号:CN112798564A
公开(公告)日:2021-05-14
申请号:CN202011524528.0
申请日:2020-12-22
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种随机光学重建与结构光照明复合超分辨成像系统,包括:光源模块,用于提供多个不同波长的合束照明光线,并控制光线照明时序,还用于控制单一波长光线照明,或者多个波长光线交替照明,或者多个波长光线同时照明;复合光场调控模块,包括用于将入射光场调控为余弦结构照明光场的第一光学调控装置,和用于将入射光场调控为均匀照明光场的第二光学调控装置;两种光学调控装置可以独立工作、交替工作或者同时工作;荧光成像模块,用于采集样本的多幅原始荧光图像并由计算机重建超分辨图像。本发明通过在一套光学成像平台实现随机光学重建与结构光照明两种超分辨成像技术联用,可实现对复杂生物体系的多模式、跨分辨率尺度同时成像。
-
公开(公告)号:CN111650739A
公开(公告)日:2020-09-11
申请号:CN202010434454.5
申请日:2020-05-21
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种基于DMD的单帧曝光快速三维荧光成像系统及方法,系统包括DMD双侧照明模块,用于产生两束不同波长的光并分别从不同的方向入射至DMD,生成互补的条纹光;双色荧光激发模块,用于接收互补的条纹光,激发样品上的双色荧光,生成携带双色荧光的条纹光;双色分画幅成像模块,用于将不同波长的携带双色荧光的条纹光成像至相机靶面的不同位置,形成双色图像;重构模块,用于实现去除离焦信息。本发明通过单次曝光、单次采集即可以实现结构光照明三维层切成像;此外,采用DMD投影,提高投影速度和投影条纹的精度,进而提高了三维成像的速度和精度。
-
公开(公告)号:CN111145089A
公开(公告)日:2020-05-12
申请号:CN201911129196.3
申请日:2019-11-18
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种高保真图像重构方法、系统、计算机设备和存储介质,方法包括:读取SIM图像;生成或读取测量PSF;估计结构光条纹参数;利用频谱优化方法重构高保真SIM超分辨率图像。系统包括:图像采集模块、参数估计模块、(PSF生成模块)、图像重构模块。计算机设备和存储介质通过执行计算机程序能够实现上述方法过程。本发明能有效解决SIM超分辨图像的伪影问题,实现SIM超分辨图像的高保真重构,也可极大提高2D-SIM技术的轴向层切能力,使2D-SIM技术获得可媲美3D-SIM技术的层切能力,有效拓展2D-SIM技术的应用场景。此外,本发明使用理论生成PSF替代复杂的PSF测量过程,仍能重构出高保真SR-SIM超分辨图像。本发明适用于几乎所有的基于结构光照明技术原理SIM系统的数据处理。
-
公开(公告)号:CN109596587A
公开(公告)日:2019-04-09
申请号:CN201811519337.8
申请日:2018-12-12
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G01N21/64
Abstract: 本发明提供双层同时成像的光学系统,包括激光器、耦合器、平面反光镜、第一透镜、二向色镜、显微物镜、分光板、第二透镜、第一CCD相机、第三透镜、第二CCD相机。本发明还涉及双层同时成像的光学系统的图像处理方法、存储介质、电子设备。本发明通过激光器激被测物上荧光剂的碱基发出不同波段的荧光,经过光学系统调制后在两个CCD相机上同时对双层被测物成像。本发明能够对带有两层微流道结构的生物芯片双层同时成像,缩短了成像周期,提高了成像效率,光学系统的整体结构简单且易于搭建,并能够根据CCD相机捕获的图像恢复所测物面图像,确保了成像结果的质量。
-
-
-
-
-
-
-
-
-