-
公开(公告)号:CN105740236A
公开(公告)日:2016-07-06
申请号:CN201610066957.5
申请日:2016-01-29
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/27
CPC classification number: G06F17/2715 , G06F17/2775
Abstract: 本发明公开了一种结合写作特征和序列特征的中文情感新词识别方法和系统。该方法对于输入文本子句,基于情感词的作者写作特征和情感词的序列特征将文本子句表示为各种特征(如:字、词性等)的序列。然后,针对特征表示的文本子句,利用线性链条件随机场模型输出与文本子句对应的情感词标签序列。其中,线性链条件随机场模型基于包含传统情感词的文本训练得到。接着,基于文本子句中字的序列和情感词标签序列,利用有限状态自动机识别文本子句中的情感词,形成情感词集合。最后,利用中文旧词词库对情感词集合进行过滤,将未出现在中文旧词词库中的情感词作为中文情感新词。通过本发明实施例解决了如何提高情感新词识别精度和召回率的技术问题。
-
公开(公告)号:CN105068988B
公开(公告)日:2018-01-30
申请号:CN201510431992.8
申请日:2015-07-21
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明涉及一种多维度和多粒度情感分析方法,包括:构建情感资源,即根据特定领域文本的类别体系构建其情感资源;选择情感倾向词,即选择每个类别下的情感词并确定其情感倾向;判别情感倾向性,包括:判断信息资源的类型;从信息资源中获取情感关键词;从信息资源中识别权威发布者,并获取该信息资源的情感分析结果;对社交类信息进行情感分析;对非专有类别社交类信息的情感倾向进行分析;针对专有类别的社交信息进行情感分析。本发明的情感分析方法能够从多维度、多粒度进行情感分析以提供较高的情感分析识别率和精度。
-
公开(公告)号:CN105068988A
公开(公告)日:2015-11-18
申请号:CN201510431992.8
申请日:2015-07-21
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明涉及一种多维度和多粒度情感分析方法,包括:构建情感资源,即根据特定领域文本的类别体系构建其情感资源;选择情感倾向词,即选择每个类别下的情感词并确定其情感倾向;判别情感倾向性,包括:判断信息资源的类型;从信息资源中获取情感关键词;从信息资源中识别权威发布者,并获取该信息资源的情感分析结果;对社交类信息进行情感分析;对非专有类别社交类信息的情感倾向进行分析;针对专有类别的社交信息进行情感分析。本发明的情感分析方法能够从多维度、多粒度进行情感分析以提供较高的情感分析识别率和精度。
-
公开(公告)号:CN105740236B
公开(公告)日:2018-09-07
申请号:CN201610066957.5
申请日:2016-01-29
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明公开了一种结合写作特征和序列特征的中文情感新词识别方法和系统。该方法对于输入文本子句,基于情感词的作者写作特征和情感词的序列特征将文本子句表示为各种特征(如:字、词性等)的序列。然后,针对特征表示的文本子句,利用线性链条件随机场模型输出与文本子句对应的情感词标签序列。其中,线性链条件随机场模型基于包含传统情感词的文本训练得到。接着,基于文本子句中字的序列和情感词标签序列,利用有限状态自动机识别文本子句中的情感词,形成情感词集合。最后,利用中文旧词词库对情感词集合进行过滤,将未出现在中文旧词词库中的情感词作为中文情感新词。通过本发明实施例解决了如何提高情感新词识别精度和召回率的技术问题。
-
公开(公告)号:CN109145109B
公开(公告)日:2022-06-03
申请号:CN201710464424.7
申请日:2017-06-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/2458 , G06Q50/00
Abstract: 本发明涉及一种基于社交网络的用户群体消息传播异常分析方法和装置,包括:获取在线社交网络中用户群体的历史聊天记录,根据预先设定的时间跨度,获取历史聊天记录在时间跨度内用户群体中所有用户所发布的消息,作为消息集合;对于消息集合,根据预先设定的时间范围统计用户群体在每个时间范围内所发布的消息总数;基于时序相关性的特征提取法,对每个消息总数的特征进行提取,并将提取结果集合为样本集合;根据消息总数并采用聚类算法为样本集合对样本集合进行聚类,生成异常样本;根据异常样本判定其所在的用户群体存在消息传播异常。由此本发明能够应对数据涌发现象,同时算法直观简单,准确率更高,且本发明应用场景广泛。
-
公开(公告)号:CN108429649B
公开(公告)日:2020-11-06
申请号:CN201810244277.7
申请日:2018-03-23
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L12/24
Abstract: 本发明公开了一种基于多次单类型采集结果的综合异常判断系统,涉及网络预警技术领域。所述系统包括:阈值生成单元和异常判断单元;所述阈值生成单元,在从被采集系统上获取到的采集数据的基础上,计算判断阈值;所述异常判断单元,在所述判断阈值和所述采集数据的基础上,判断被采集系统运行是正常还是异常。本发明所述系统对采集到的数据进行多种方式进行判断,从而在不接触被监测系统后台日志或硬件数据的情况下准确识别出被检测系统的运行状况,解决了因使用平均值计算抗干扰性太弱,固定阈值判断性能太差,阈值波动范围设置方案单一且低效的问题。
-
公开(公告)号:CN106126606B
公开(公告)日:2019-08-20
申请号:CN201610453319.9
申请日:2016-06-21
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/2458 , G06F16/33
Abstract: 本发明公开了一种短文本新词发现方法。本方法为:1)从当前短文本中提取一字符串s,计算该字符串s的对称条件概率SCP(s)以及该字符串s的左邻熵HL(s)和右邻熵HL(s);2)取左邻熵HL(s)和右邻熵HL(s)的较小值,记为BE(s);3)计算该字符串s的成词概率Prword(s),根据Prword(s)的值确定词s是否为新词。本发明大大提高了新词发现的准确率。
-
公开(公告)号:CN108429649A
公开(公告)日:2018-08-21
申请号:CN201810244277.7
申请日:2018-03-23
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L12/24
CPC classification number: H04L41/0631 , H04L41/064
Abstract: 本发明公开了一种基于多次单类型采集结果的综合异常判断系统,涉及网络预警技术领域。所述系统包括:阈值生成单元和异常判断单元;所述阈值生成单元,在从被采集系统上获取到的采集数据的基础上,计算判断阈值;所述异常判断单元,在所述判断阈值和所述采集数据的基础上,判断被采集系统运行是正常还是异常。本发明所述系统对采集到的数据进行多种方式进行判断,从而在不接触被监测系统后台日志或硬件数据的情况下准确识别出被检测系统的运行状况,解决了因使用平均值计算抗干扰性太弱,固定阈值判断性能太差,阈值波动范围设置方案单一且低效的问题。
-
公开(公告)号:CN104778209B
公开(公告)日:2018-04-27
申请号:CN201510111752.X
申请日:2015-03-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明公开了一种针对千万级规模新闻评论的观点挖掘方法。具体步骤如下:1)、统计千万级规模新闻评论的数量;2)、判断该数量是否大于或等于阈值K,如果是不予处理,否则进入步骤三;3)、利用中文分词工具,对数量小于阈值K的新闻标题和评论进行分词,进行词性标注;4)、根据分词结果对新闻评论聚类,得到类别标签;5)、对新闻评论进行关键词对提取;6)、统计新闻评论的比例和混杂度;7)、根据关键词对筛选并提取代表性文本。本发明利用中文分词工具,考虑汉语语言的用法和搭配关系,结合新闻标题的作用,处理千万级规模的新闻评论,具有高效性、鲁棒性和易用性等优点。
-
公开(公告)号:CN106503859A
公开(公告)日:2017-03-15
申请号:CN201610963409.2
申请日:2016-10-28
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提出一种基于在线社会关系网络的消息传播预测方法及装置,涉及社交媒体及大数据技术领域,该方法包括步骤1,对于一条消息d,获取其发出后在[0,T]时间段内,用户对其关注行为到达的时间序列;步骤2,对所述时间序列进行建模,对建模生成的模型进行学习,训练出所述模型的模型参数,根据所述模型参数,获取消息流行度预测函数。本发明能够应对数据涌发现象;通过MAPE对比,该方法准确率更高;形式灵活,可以应用到其他应用场景。
-
-
-
-
-
-
-
-
-