-
公开(公告)号:CN109213851A
公开(公告)日:2019-01-15
申请号:CN201810724523.9
申请日:2018-07-04
Applicant: 中国科学院自动化研究所 , 出门问问信息科技有限公司
IPC: G06F16/332 , G06F17/28 , G06F17/27
Abstract: 本发明涉及语言处理领域,并提出了一种对话系统中口语理解的跨语言迁移方法,旨在解决在对话系统中口语理解的跨语言迁移中,因语义标签难以迁移和语言文化差异造成迁移结果质量不佳的技术问题。为此目的,本发明中的口语的跨语言迁移方法包括:获取待迁移的有标注口语理解数据;利用预先构建的口语理解迁移模型对所述带类别标记的待迁移数据进行迁移,得到带类别标记的第一迁移结果;对第一迁移结果进行文化迁移,得到目标语言的口语理解数据。基于上述步骤,本发明可以快速、准确的对口语理解数据进行跨语言迁移,改善了因为双语带类别标记数据不足而导致的有监督训练方法效果不佳的问题,降低了在模型训练中的数据收集和标注成本。
-
公开(公告)号:CN109213851B
公开(公告)日:2021-05-25
申请号:CN201810724523.9
申请日:2018-07-04
Applicant: 中国科学院自动化研究所 , 出门问问信息科技有限公司
IPC: G06F16/332 , G06F40/58 , G06F40/30
Abstract: 本发明涉及语言处理领域,并提出了一种对话系统中口语理解的跨语言迁移方法,旨在解决在对话系统中口语理解的跨语言迁移中,因语义标签难以迁移和语言文化差异造成迁移结果质量不佳的技术问题。为此目的,本发明中的口语的跨语言迁移方法包括:获取待迁移的有标注口语理解数据;利用预先构建的口语理解迁移模型对所述带类别标记的待迁移数据进行迁移,得到带类别标记的第一迁移结果;对第一迁移结果进行文化迁移,得到目标语言的口语理解数据。基于上述步骤,本发明可以快速、准确的对口语理解数据进行跨语言迁移,改善了因为双语带类别标记数据不足而导致的有监督训练方法效果不佳的问题,降低了在模型训练中的数据收集和标注成本。
-
公开(公告)号:CN110413752B
公开(公告)日:2021-11-16
申请号:CN201910661448.0
申请日:2019-07-22
Applicant: 中国科学院自动化研究所
IPC: G06F16/332 , G06F16/35 , G06K9/62
Abstract: 本发明属于人机对话技术领域,具体涉及一种基于对话逻辑的多轮口语理解方法、系统、装置,旨在解决现有多轮口语理解方法对历史对话数据利用率低的问题。本系统方法包括获取当前对话数据、历史对话数据;通过双向门控循环神经网络,分别将当前对话数据和历史对话数据编码成输入向量和记忆向量;根据所述输入向量、所述记忆向量,通过基于注意力机制的记忆检索方法生成语境知识向量;基于所述语境知识向量和所述当前对话数据,通过多轮口语理解模型获取当前对话数据的意图分类信息和语义槽填充信息。本发明可以在多轮口语理解中对历史对话数据高效的利用,提升语言理解在多轮场景下的性能。
-
公开(公告)号:CN110413752A
公开(公告)日:2019-11-05
申请号:CN201910661448.0
申请日:2019-07-22
Applicant: 中国科学院自动化研究所
IPC: G06F16/332 , G06F16/35 , G06K9/62
Abstract: 本发明属于人机对话技术领域,具体涉及一种基于对话逻辑的多轮口语理解方法、系统、装置,旨在解决现有多轮口语理解方法对历史对话数据利用率低的问题。本系统方法包括获取当前对话数据、历史对话数据;通过双向门控循环神经网络,分别将当前对话数据和历史对话数据编码成输入向量和记忆向量;根据所述输入向量、所述记忆向量,通过基于注意力机制的记忆检索方法生成语境知识向量;基于所述语境知识向量和所述当前对话数据,通过多轮口语理解模型获取当前对话数据的意图分类信息和语义槽填充信息。本发明可以在多轮口语理解中对历史对话数据高效的利用,提升语言理解在多轮场景下的性能。
-
-
-