-
公开(公告)号:CN111985572A
公开(公告)日:2020-11-24
申请号:CN202010877341.2
申请日:2020-08-27
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于深度学习、计算机视觉及细粒度图像分类领域,具体涉及了一种基于特征比较的通道注意力机制的细粒度图像识别方法、系统及装置,旨在解决在细粒度图像标注数据较少的情况下,常规模型的识别正确率较低、细粒度分类模型结构复杂的问题。本发明包括:提取样本的特征图并经过非线性映射和平均池化后得到基本特征向量;计算并更新类别平均特征向量,与样本基本特征向量比较;对比较结果进行编码;根据样本基本特征向量学习特征通道的基础注意力权重;融合编码结果和基础注意力权重并进行映射,得到最终注意力权重引导模型训练;将训练后的模型应用到细粒度图像识别中。本发明以简单有效的方式提升了常规分类器在细粒度任务中的分类准确性。
-
公开(公告)号:CN111985572B
公开(公告)日:2022-03-25
申请号:CN202010877341.2
申请日:2020-08-27
Applicant: 中国科学院自动化研究所
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明属于深度学习、计算机视觉及细粒度图像分类领域,具体涉及了一种基于特征比较的通道注意力机制的细粒度图像识别方法、系统及装置,旨在解决在细粒度图像标注数据较少的情况下,常规模型的识别正确率较低、细粒度分类模型结构复杂的问题。本发明包括:提取样本的特征图并经过非线性映射和平均池化后得到基本特征向量;计算并更新类别平均特征向量,与样本基本特征向量比较;对比较结果进行编码;根据样本基本特征向量学习特征通道的基础注意力权重;融合编码结果和基础注意力权重并进行映射,得到最终注意力权重引导模型训练;将训练后的模型应用到细粒度图像识别中。本发明以简单有效的方式提升了常规分类器在细粒度任务中的分类准确性。
-