-
公开(公告)号:CN103177264B
公开(公告)日:2016-09-14
申请号:CN201310081556.3
申请日:2013-03-14
Applicant: 中国科学院自动化研究所
IPC: G06K9/62
Abstract: 本发明公开了一种基于视觉词典全局拓扑表达的图像分类方法,包括训练和识别两个过程,具体包括步骤:对已经标好类别的目标图像进行特征提取,对提取的特征在视觉词典上进行全局拓扑编码,对编码结果进行训练并建模;对未知类别的图像进行特征提取,对提取的特征在视觉词典上进行全局拓扑编码,将编码结果输入到训练得到的模型,获得目标图像的类别。由于全局拓扑表达对于图像的流形表达具有不变性,因此本发明采用基于视觉词典的全局拓扑表达提高图像识别的精度,并且该技术对于动态图像的理解具有重要的意义。本发明通过学习视觉词典的全局拓扑表达,可以准确的识别图像的类别,这一技术可广泛应用于安全检验,网络搜索和数字娱乐等领域。
-
公开(公告)号:CN103020658B
公开(公告)日:2015-06-03
申请号:CN201210593054.4
申请日:2012-12-31
Applicant: 中国科学院自动化研究所
IPC: G06K9/66
Abstract: 本发明公开一种基于视觉机制的鲁棒物体结构学习方法的物体识别方法,包括训练和识别两个过程,包括步骤:对已经标好类别和位置的图像中的目标物体进行视觉机制的信息反馈,并训练得到反馈模型;对待识别图像中的物体进行物体类别和物体位置的初步预测,利用训练得到的反馈模型,鲁棒地学习目标物体的结构信息。由于鲁棒的物体结构和视觉机制对物体识别具有不变性,因此本发明采用基于视觉机制的鲁棒物体结构学习方法来提高物体识别的精度,并且本发明准确识别场景中目标的类别和位置,能广泛应用于安全检验,网络搜索和数字娱乐等。
-
公开(公告)号:CN102609732B
公开(公告)日:2013-09-25
申请号:CN201210021813.X
申请日:2012-01-31
Applicant: 中国科学院自动化研究所
IPC: G06K9/66
Abstract: 本发明公开了一种基于泛化视觉词典图编码的目标识别方法,包括以下步骤:对已经标好类别的目标图像进行特征提取,对提取的特征在视觉词典图上进行泛化编码,对编码结果进行训练并建模;对未知类别的图像进行特征提取,将提取的特征在视觉词典图上进行泛化编码,将编码结果输入到训练得到的模型,获得图像中目标的类别。该方法采用基于泛化视觉词典图的编码技术来提高分类精度,可用于智能视觉监控系统,使得监控系统能真正理解场景;可用于多媒体数字内容分析中的目标分析,判断目标的类别;可用于分析顾客对特定产品或者特定娱乐项目喜好。
-
公开(公告)号:CN104217225B
公开(公告)日:2018-04-24
申请号:CN201410442817.4
申请日:2014-09-02
Applicant: 中国科学院自动化研究所
Abstract: 本发明公开了一种视觉目标检测与标注方法,包括:图像输入步骤,输入待检测图像;候选区域提取步骤,使用选择性搜索算法从所述待检测图像中提取候选窗口作为候选区域;特征描述提取步骤,使用预先训练的大规模卷积神经网络对候选区域进行特征描述并输出该候选区域的特征描述;视觉目标预测步骤,基于所述候选区域的特征描述,利用预先训练的物体检测模型对候选区域进行预测,估计存在所述视觉目标的区域;位置标注步骤,根据所述估计结果对所述视觉目标的位置进行标注。实验表明本发明与主流弱监督视觉目标检测与标注方法相比,具有更强的正样本挖掘能力和更一般的应用前景,适合于在大规模数据集上的视觉目标检测与自动标注任务。
-
公开(公告)号:CN104573669A
公开(公告)日:2015-04-29
申请号:CN201510041017.6
申请日:2015-01-27
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种能够在大图像数据集上获得较好检测性能的图像物体检测方法,包括:对多个样本图像按照信息量级别分别进行标注,获得对应的标注图像;提取所述标注图像中包含物体的区域或包含物体概率最大的区域并生成候选窗口;在卷积神经网络上提取所述候选窗口的特征表达并组成候选集,通过半监督学习对所述候选集进行拟合,获得图像检测模型目标函数;提取待检测图像中包含目标物体的区域或包含目标物体概率最大的区域并生成待检测窗口,提取所述待检测窗口的特征表达并进行检测,获得包含所述目标物体概率最大的所述候选窗口。本发明所述方法能够在大数据集上较快速准确的对目标物体进行检测。
-
公开(公告)号:CN103177264A
公开(公告)日:2013-06-26
申请号:CN201310081556.3
申请日:2013-03-14
Applicant: 中国科学院自动化研究所
IPC: G06K9/62
Abstract: 本发明公开了一种基于视觉词典全局拓扑表达的图像分类方法,包括训练和识别两个过程,具体包括步骤:对已经标好类别的目标图像进行特征提取,对提取的特征在视觉词典上进行全局拓扑编码,对编码结果进行训练并建模;对未知类别的图像进行特征提取,对提取的特征在视觉词典上进行全局拓扑编码,将编码结果输入到训练得到的模型,获得目标图像的类别。由于全局拓扑表达对于图像的流形表达具有不变性,因此本发明采用基于视觉词典的全局拓扑表达提高图像识别的精度,并且该技术对于动态图像的理解具有重要的意义。本发明通过学习视觉词典的全局拓扑表达,可以准确的识别图像的类别,这一技术可广泛应用于安全检验,网络搜索和数字娱乐等领域。
-
公开(公告)号:CN104573669B
公开(公告)日:2018-09-04
申请号:CN201510041017.6
申请日:2015-01-27
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种能够在大图像数据集上获得较好检测性能的图像物体检测方法,包括:对多个样本图像按照信息量级别分别进行标注,获得对应的标注图像;提取所述标注图像中包含物体的区域或包含物体概率最大的区域并生成候选窗口;在卷积神经网络上提取所述候选窗口的特征表达并组成候选集,通过半监督学习对所述候选集进行拟合,获得图像检测模型目标函数;提取待检测图像中包含目标物体的区域或包含目标物体概率最大的区域并生成待检测窗口,提取所述待检测窗口的特征表达并进行检测,获得包含所述目标物体概率最大的所述候选窗口。本发明所述方法能够在大数据集上较快速准确的对目标物体进行检测。
-
公开(公告)号:CN104217225A
公开(公告)日:2014-12-17
申请号:CN201410442817.4
申请日:2014-09-02
Applicant: 中国科学院自动化研究所
Abstract: 本发明公开了一种视觉目标检测与标注方法,包括:图像输入步骤,输入待检测图像;候选区域提取步骤,使用选择性搜索算法从所述待检测图像中提取候选窗口作为候选区域;特征描述提取步骤,使用预先训练的大规模卷积神经网络对候选区域进行特征描述并输出该候选区域的特征描述;视觉目标预测步骤,基于所述候选区域的特征描述,利用预先训练的物体检测模型对候选区域进行预测,估计存在所述视觉目标的区域;位置标注步骤,根据所述估计结果对所述视觉目标的位置进行标注。实验表明本发明与主流弱监督视觉目标检测与标注方法相比,具有更强的正样本挖掘能力和更一般的应用前景,适合于在大规模数据集上的视觉目标检测与自动标注任务。
-
公开(公告)号:CN103020658A
公开(公告)日:2013-04-03
申请号:CN201210593054.4
申请日:2012-12-31
Applicant: 中国科学院自动化研究所
IPC: G06K9/66
Abstract: 本发明公开一种基于视觉机制的鲁棒物体结构学习方法的物体识别方法,包括训练和识别两个过程,包括步骤:对已经标好类别和位置的图像中的目标物体进行视觉机制的信息反馈,并训练得到反馈模型;对待识别图像中的物体进行物体类别和物体位置的初步预测,利用训练得到的反馈模型,鲁棒地学习目标物体的结构信息。由于鲁棒的物体结构和视觉机制对物体识别具有不变性,因此本发明采用基于视觉机制的鲁棒物体结构学习方法来提高物体识别的精度,并且本发明准确识别场景中目标的类别和位置,能广泛应用于安全检验,网络搜索和数字娱乐等。
-
公开(公告)号:CN102609732A
公开(公告)日:2012-07-25
申请号:CN201210021813.X
申请日:2012-01-31
Applicant: 中国科学院自动化研究所
IPC: G06K9/66
Abstract: 本发明公开了一种基于泛化视觉词典图编码的目标识别方法,包括以下步骤:对已经标好类别的目标图像进行特征提取,对提取的特征在视觉词典图上进行泛化编码,对编码结果进行训练并建模;对未知类别的图像进行特征提取,将提取的特征在视觉词典图上进行泛化编码,将编码结果输入到训练得到的模型,获得图像中目标的类别。该方法采用基于泛化视觉词典图的编码技术来提高分类精度,可用于智能视觉监控系统,使得监控系统能真正理解场景;可用于多媒体数字内容分析中的目标分析,判断目标的类别;可用于分析顾客对特定产品或者特定娱乐项目喜好。
-
-
-
-
-
-
-
-
-