-
公开(公告)号:CN109241829A
公开(公告)日:2019-01-18
申请号:CN201810824370.5
申请日:2018-07-25
Applicant: 中国科学院自动化研究所
CPC classification number: G06K9/00342 , G06K9/00724 , G06N3/0454
Abstract: 本发明属于计算机视觉技术领域,具体涉及一种基于时空注意卷积神经网络的行为识别方法及装置,旨在解决如何准确识别视频中目标行为的技术问题。本发明提供的行为识别方法包括:将待测视频等间隔地分割为多个视频段;基于预先构建的空间注意网络提取每个视频段的光流特征,根据每个视频段的光流特征获取每个视频段的运动显著区域并且根据运动显著区域生成空间运动显著性映射图;基于预先构建的视频分类网络并且根据多个预设的行为类别、每个视频段以及相应的空间运动显著性映射图预测每个视频段对应的行为类别;按可信度降序选取前N个视频段的预测结果的加权平均值作为待测视频的行为识别结果。本发明能够有效提升行为识别的效果。
-
公开(公告)号:CN109241829B
公开(公告)日:2020-12-04
申请号:CN201810824370.5
申请日:2018-07-25
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于计算机视觉技术领域,具体涉及一种基于时空注意卷积神经网络的行为识别方法及装置,旨在解决如何准确识别视频中目标行为的技术问题。本发明提供的行为识别方法包括:将待测视频等间隔地分割为多个视频段;基于预先构建的空间注意网络提取每个视频段的光流特征,根据每个视频段的光流特征获取每个视频段的运动显著区域并且根据运动显著区域生成空间运动显著性映射图;基于预先构建的视频分类网络并且根据多个预设的行为类别、每个视频段以及相应的空间运动显著性映射图预测每个视频段对应的行为类别;按可信度降序选取前N个视频段的预测结果的加权平均值作为待测视频的行为识别结果。本发明能够有效提升行为识别的效果。
-