基于特定边界检测子的鲁棒虹膜区域分割方法

    公开(公告)号:CN102629319B

    公开(公告)日:2014-02-19

    申请号:CN201210083379.8

    申请日:2012-03-27

    Abstract: 本发明公开了一种基于特定边界检测子的鲁棒虹膜区域分割方法。该方法包括以下步骤:S1:构建左、右内边界、左、右外边界以及上、下眼皮边界六个虹膜特定边界训练数据集和候选特征集合;S2:使用级联的自适应学习算法构建六个虹膜特定边界检测子;S3:利用左、右内边界检测子和加权霍夫变换定位虹膜内边界;S4:利用左、右外边界检测子和加权霍夫变换定位虹膜外边界;S5:利用上、下眼皮边界检测子和鲁棒最小二乘法定位上下眼皮边界。利用本发明,能够准确地在包含大量噪声的虹膜图像中分割出虹膜有效区域,提高了虹膜识别系统的精度、鲁棒性和易用性。本发明可广泛用于使用虹膜识别进行身份识别和安全性防范的诸多应用系统中。

    基于深度学习特征和Fisher Vector编码模型的虹膜图像分类方法

    公开(公告)号:CN107220598A

    公开(公告)日:2017-09-29

    申请号:CN201710333852.6

    申请日:2017-05-12

    CPC classification number: G06K9/00617 G06K9/0061 G06K9/6269 G06N3/08

    Abstract: 本发明提供了一种虹膜图像分类方法,包括:在虹膜纹理基元的构建阶段对样本虹膜图像进行处理,得到虹膜纹理基元;在虹膜分类器的构建阶段基于所述的纹理基元和支持向量机来构造虹膜分类器;在判别阶段使用所述虹膜分类器来对目标虹膜图像进行分类。本发明虹膜图像分类方法可以有效地完成虹膜图像的分类问题,提高了虹膜识别的高效性和安全性。本发明利用深度学习得到的特征来代替传统手工设计的特征来提取虹膜的纹理基元,具有高精度、高鲁棒性和高可靠性的优点,适用于活体检测、人种识别、性别识别等多种应用需求的虹膜图像分类问题。本发明有效解决了虹膜系统在产品化的过程中遇到的系统安全问题和大规模数据检索等问题。

    基于深度学习特征和Fisher Vector编码模型的虹膜图像分类方法

    公开(公告)号:CN107220598B

    公开(公告)日:2020-11-10

    申请号:CN201710333852.6

    申请日:2017-05-12

    Abstract: 本发明提供了一种虹膜图像分类方法,包括:在虹膜纹理基元的构建阶段对样本虹膜图像进行处理,得到虹膜纹理基元;在虹膜分类器的构建阶段基于所述的纹理基元和支持向量机来构造虹膜分类器;在判别阶段使用所述虹膜分类器来对目标虹膜图像进行分类。本发明虹膜图像分类方法可以有效地完成虹膜图像的分类问题,提高了虹膜识别的高效性和安全性。本发明利用深度学习得到的特征来代替传统手工设计的特征来提取虹膜的纹理基元,具有高精度、高鲁棒性和高可靠性的优点,适用于活体检测、人种识别、性别识别等多种应用需求的虹膜图像分类问题。本发明有效解决了虹膜系统在产品化的过程中遇到的系统安全问题和大规模数据检索等问题。

    基于深度学习的嘴巴张闭状态检测方法

    公开(公告)号:CN106250840A

    公开(公告)日:2016-12-21

    申请号:CN201610603175.0

    申请日:2016-07-27

    CPC classification number: G06K9/00281 G06K9/00288 G06N3/084

    Abstract: 本发明公开了一种基于深度学习的嘴巴张闭状态检测方法,其主要包括数据预处理部分、特征提取部分、特征分类部分和误差计算部分。本发明最大的特点是充分利用深度卷积神经网络提取高层次特征的能力,提取出可以应对实际应用场景中经常存在的无规律噪声、较大光照变化以及通过遮挡嘴部关键部位进行恶意攻击等情况的鲁棒特征,并且利用全连接层来对提取到的特征分类,并通过计算误差并采用随机梯度下降法调整参数从而减小误差的方法来使检测方法自动习得分辨嘴巴张闭状态的能力。此外,本发明能够保证所需的计算资源和存储空间都不会因待检测图像分辨率的变化而产生大幅度波动。本发明操作方便,简单易用,精度更高、更加安全可靠。

    基于特定边界检测子的鲁棒虹膜区域分割方法

    公开(公告)号:CN102629319A

    公开(公告)日:2012-08-08

    申请号:CN201210083379.8

    申请日:2012-03-27

    Abstract: 本发明公开了一种基于特定边界检测子的鲁棒虹膜区域分割方法。该方法包括以下步骤:S1:构建左、右内边界、左、右外边界以及上、下眼皮边界六个虹膜特定边界训练数据集和候选特征集合;S2:使用级联的自适应学习算法构建六个虹膜特定边界检测子;S3:利用左、右内边界检测子和加权霍夫变换定位虹膜内边界;S4:利用左、右外边界检测子和加权霍夫变换定位虹膜外边界;S5:利用上、下眼皮边界检测子和鲁棒最小二乘法定位上下眼皮边界。利用本发明,能够准确地在包含大量噪声的虹膜图像中分割出虹膜有效区域,提高了虹膜识别系统的精度、鲁棒性和易用性。本发明可广泛用于使用虹膜识别进行身份识别和安全性防范的诸多应用系统中。

    基于多任务自编码器的交互式人脸活体检测方法和装置

    公开(公告)号:CN106022264A

    公开(公告)日:2016-10-12

    申请号:CN201610339145.3

    申请日:2016-05-19

    CPC classification number: G06K9/00906

    Abstract: 本发明公开了一种基于多任务自编码器的人脸活体检测方法和装置。方法包括:通过摄像头进行人脸检测并且跟踪,获得人脸图像;提示用户做指定动作;根据所获得的人脸图像,通过多任务自编码器进行人脸关键点检测以及面部器官状态的判定;多任务自编码器进行人脸位置跟踪,并通过一段时间的视频判断用户是否做指定的动作,同时获取用户图片;重复步骤S2‑S4,经过预定时间后,根据用户完成指定动作情况判断活体检测是否成功。本发明通过多任务自编码器,既可以定位关键点,也可以自然的加入对指定各种动作的判断,在不增加额外模型运算的同时,能够有效的防止活体检测中的图像及视频攻击。

Patent Agency Ranking