基于定序神经网络模型的人脸识别方法及装置

    公开(公告)号:CN106096538B

    公开(公告)日:2019-08-23

    申请号:CN201610403028.9

    申请日:2016-06-08

    Abstract: 本发明公开一种基于定序神经网络模型的人脸识别方法及装置。该方法包括:对输入的人脸图像进行预处理操作,校正人脸图像的角度与表情;使用包含定序操作的神经网络提取已校正人脸图像/视频的特征;根据人脸图像的特征表达计算图像对间的相似度,从而得知输入人脸图像中特定对象的身份。本发明针对人脸识别问题中,基于神经网络的人脸识别模型参数多,计算开销大的问题,提出定序神经网络结构,通过不同特征间的定序表示有效地减少网络参数,节省计算时间;并针对训练数据较少的问题,提出了基于对比损失、三元组损失的训练方法。

    人脸关键点定位方法及装置

    公开(公告)号:CN106599830A

    公开(公告)日:2017-04-26

    申请号:CN201611135718.7

    申请日:2016-12-09

    Abstract: 本发明公开了一种人脸关键点定位方法及装置。该方法包括:通过多任务卷积神经网络进行粗定位,确定人脸关键点大体位置;然后在关键点周围提取局部区域,通过全局级联卷积神经网络把关键点周围提取局部区域融合到一起,进行级联定位;最后在针对每个关键点单独训练卷积神经网络进行精细定位。本发明所用神经网络总体数目较少,定位效果相对较好。

    人脸关键点定位方法及装置

    公开(公告)号:CN106599830B

    公开(公告)日:2020-03-17

    申请号:CN201611135718.7

    申请日:2016-12-09

    Abstract: 本发明公开了一种人脸关键点定位方法及装置。该方法包括:通过多任务卷积神经网络进行粗定位,确定人脸关键点大体位置;然后在关键点周围提取局部区域,通过全局级联卷积神经网络把关键点周围提取局部区域融合到一起,进行级联定位;最后在针对每个关键点单独训练卷积神经网络进行精细定位。本发明所用神经网络总体数目较少,定位效果相对较好。

    基于定序神经网络模型的人脸识别方法及装置

    公开(公告)号:CN106096538A

    公开(公告)日:2016-11-09

    申请号:CN201610403028.9

    申请日:2016-06-08

    Abstract: 本发明公开一种基于定序神经网络模型的人脸识别方法及装置。该方法包括:对输入的人脸图像进行预处理操作,校正人脸图像的角度与表情;使用包含定序操作的神经网络提取已校正人脸图像/视频的特征;根据人脸图像的特征表达计算图像对间的相似度,从而得知输入人脸图像中特定对象的身份。本发明针对人脸识别问题中,基于神经网络的人脸识别模型参数多,计算开销大的问题,提出定序神经网络结构,通过不同特征间的定序表示有效地减少网络参数,节省计算时间;并针对训练数据较少的问题,提出了基于对比损失、三元组损失的训练方法。

Patent Agency Ranking