-
公开(公告)号:CN111507762B
公开(公告)日:2023-10-31
申请号:CN202010294002.1
申请日:2020-04-15
Applicant: 中国科学院自动化研究所
IPC: G06Q30/0202 , G06Q50/26 , G06Q50/30 , G06N3/0499 , G06N3/0464 , G06N3/0442 , G06N3/08
Abstract: 本发明属于智能交通系统领域,具体涉及了一种基于多任务共预测神经网络的城市出租车需求预测方法,旨在解决现有技术不考虑下车需求导致出租车需求预测精度达不到预期的问题。本发明包括:将城市划分为网格,连续时间离散为时间块,并将一段时期内城市出租车载客的实时数据归到各网格的各时间块内,统计上下车需求量来训练可同时预测两种需求的多任务共预测神经网络,该神经网络可用于预测未来时间段内出租车的上下车需求量。本发明将出租车需求预测问题建模为上车和下车需求的时序预测问题,同时捕捉上车和下车需求之间的差异和联系,预测精度高、泛化性能好,有助于出租车管理部门合理配置出租车资源以解决城市不同区域出租车供求不平衡的问题。
-
公开(公告)号:CN112861925B
公开(公告)日:2023-04-07
申请号:CN202110062310.6
申请日:2021-01-18
Applicant: 中国科学院自动化研究所
IPC: G06F18/23 , G06N3/0442 , G06N3/049 , G06N3/048 , G06Q10/0631 , G06Q10/04 , G06Q50/30
Abstract: 本发明涉及一种基于深度学习网络的多区域车辆需求预测方法及系统,所述车辆需求预测方法包括:获取多个待测区域的不同时段内的车辆需求的观测数据及天气环境历史数据;根据多个待测区域的车辆需求的观测数据,将各待测区域划分为多个簇;基于LSTM及全连接网络,根据各簇内不同时段内的车辆需求的观测数据及对应的天气环境历史数据,确定簇预测网络;基于LSTM及全连接网络,根据各待测区域的不同时段内的车辆需求的观测数据及对应的天气环境历史数据,确定全局预测网络;根据簇预测网络及全局预测网络,确定深度学习网络。本发明能够兼顾全局特性和区域特性,可预测下一时段内所有待测区域的车辆需求的终级预测数据,提高车辆需求预测的准确度。
-
公开(公告)号:CN112861925A
公开(公告)日:2021-05-28
申请号:CN202110062310.6
申请日:2021-01-18
Applicant: 中国科学院自动化研究所
Abstract: 本发明涉及一种基于深度学习网络的多区域车辆需求预测方法及系统,所述车辆需求预测方法包括:获取多个待测区域的不同时段内的车辆需求的观测数据及天气环境历史数据;根据多个待测区域的车辆需求的观测数据,将各待测区域划分为多个簇;基于LSTM及全连接网络,根据各簇内不同时段内的车辆需求的观测数据及对应的天气环境历史数据,确定簇预测网络;基于LSTM及全连接网络,根据各待测区域的不同时段内的车辆需求的观测数据及对应的天气环境历史数据,确定全局预测网络;根据簇预测网络及全局预测网络,确定深度学习网络。本发明能够兼顾全局特性和区域特性,可预测下一时段内所有待测区域的车辆需求的终级预测数据,提高车辆需求预测的准确度。
-
公开(公告)号:CN111507762A
公开(公告)日:2020-08-07
申请号:CN202010294002.1
申请日:2020-04-15
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于智能交通系统领域,具体涉及了一种基于多任务共预测神经网络的城市出租车需求预测方法,旨在解决现有技术不考虑下车需求导致出租车需求预测精度达不到预期的问题。本发明包括:将城市划分为网格,连续时间离散为时间块,并将一段时期内城市出租车载客的实时数据归到各网格的各时间块内,统计上下车需求量来训练可同时预测两种需求的多任务共预测神经网络,该神经网络可用于预测未来时间段内出租车的上下车需求量。本发明将出租车需求预测问题建模为上车和下车需求的时序预测问题,同时捕捉上车和下车需求之间的差异和联系,预测精度高、泛化性能好,有助于出租车管理部门合理配置出租车资源以解决城市不同区域出租车供求不平衡的问题。
-
-
-