语音溯源取证方法及装置、设备及存储介质

    公开(公告)号:CN115083422B

    公开(公告)日:2022-11-15

    申请号:CN202210859678.X

    申请日:2022-07-21

    Abstract: 本公开涉及一种语音溯源取证方法及装置、设备及存储介质,所述方法包括:本提取待测试语音的至少两种不同的声学特征;对提取的待测试语音的至少两种不同的声学特征进行融合,得到第一融合声学特征;基于预先训练的语音溯源取证模型,从所述第一融合声学特征中提取帧级别的算法指纹特征,对帧级别的算法指纹特征进行池化平均,根据池化平均得到的特征加权平均向量和加权标准差向量计算段级别的算法指纹特征,以基于段级别的算法指纹特征预测出待测试语音的生成算法;将预测出的待测试语音的生成算法作为语音溯源取证结果,通过提取算法指纹,不仅可以判断音频的真实性,而且可以进一步溯源取证,得到虚假音频的生成来源。

    语音检测方法及装置、设备及存储介质

    公开(公告)号:CN114937455B

    公开(公告)日:2022-10-11

    申请号:CN202210861977.7

    申请日:2022-07-21

    Abstract: 本公开涉及一种语音检测方法及装置、设备及存储介质,所述方法包括:接收待检测语音,根据待检测语音的编码状态序列中每一个编码状态向量及其对应的权重值确定语义声学特征;将待检测语音输入预先训练好的语音检测模型,将所述语音检测模型的隐藏层的输出作为语音声学特征;拼接所述语义声学特征和所述语音声学特征,并将拼接后的声学特征输入所述语音检测模型的输出层,输出待检测语音是真实的还是伪造的检测结果,结合待检测语音的语义声学特征检测语音的真伪,通过语义声学特征中待检测语音的编码状态向量与解码状态向量之间的相关性,能够结合待检测语音的上下文之间的相关性检测语音的真伪,提高检测的准确性。

    语音检测方法及装置、设备及存储介质

    公开(公告)号:CN114937455A

    公开(公告)日:2022-08-23

    申请号:CN202210861977.7

    申请日:2022-07-21

    Abstract: 本公开涉及一种语音检测方法及装置、设备及存储介质,所述方法包括:接收待检测语音,根据待检测语音的编码状态序列中每一个编码状态向量及其对应的权重值确定语义声学特征;将待检测语音输入预先训练好的语音检测模型,将所述语音检测模型的隐藏层的输出作为语音声学特征;拼接所述语义声学特征和所述语音声学特征,并将拼接后的声学特征输入所述语音检测模型的输出层,输出待检测语音是真实的还是伪造的检测结果,结合待检测语音的语义声学特征检测语音的真伪,通过语义声学特征中待检测语音的编码状态向量与解码状态向量之间的相关性,能够结合待检测语音的上下文之间的相关性检测语音的真伪,提高检测的准确性。

    一种统一的语音合成与语音转换的训练方法和系统

    公开(公告)号:CN114495898B

    公开(公告)日:2022-07-01

    申请号:CN202210395964.5

    申请日:2022-04-15

    Abstract: 本发明提出一种统一的语音合成与语音转换的训练方法和系统。其中,方法包括:将语音合成和语音转换的编码任务解耦成三个子任务,分别为内容信息的提取、说话人信息的提取和韵律信息的提取;所述内容信息是与说话人无关的语言信息;所述说话人信息包括:说话人的特征;所述韵律信息表示说话人如何说出内容信息,反映语音的节奏;将提取得到的所述内容信息、说话人信息和韵律信息输入解码任务,得到还原的语音信息。本发明提出的方案,将语音合成与语音转换模型进行了统一,避免了独立搭建的困难;使用无标注的语音提高语音合成与语音转换的性能。

    一种基于稀疏强化学习的传感器网络优化方法

    公开(公告)号:CN103702349B

    公开(公告)日:2017-03-01

    申请号:CN201310739109.2

    申请日:2013-12-26

    Abstract: 本发明提出一种基于新的稀疏强化学习的传感器网络优化方法,包括:步骤1,将传感器网络中的传感器划分为多个传感器基团;步骤2,将所述传感器网络中表示所有传感器控制策略的全局Q值函数分解为表示各个传感器基团中传感器控制策略的Q值函数之和,并获取与分解后的Q值函数对应的因子图;步骤3,计算当前状态下所有传感器的贪婪联合动作;步骤4,各个传感器执行所述贪婪联合动作或随机动作,并更新每个传感器基团的Q值函数;步骤5,重复步骤3~4,直至传感器基团的Q值函数收敛;步骤6,根据学习得到的传感器基团的Q值函数和当前目标所处的状态,使用一般最大和算法计算获得所有传感器的贪婪联合动作,供每个传感器执行。

    一种基于稀疏强化学习的传感器网络优化方法

    公开(公告)号:CN103702349A

    公开(公告)日:2014-04-02

    申请号:CN201310739109.2

    申请日:2013-12-26

    Abstract: 本发明提出一种基于新的稀疏强化学习的传感器网络优化方法,包括:步骤1,将传感器网络中的传感器划分为多个传感器基团;步骤2,将所述传感器网络中表示所有传感器控制策略的全局Q值函数分解为表示各个传感器基团中传感器控制策略的Q值函数之和,并获取与分解后的Q值函数对应的因子图;步骤3,计算当前状态下所有传感器的贪婪联合动作;步骤4,各个传感器执行所述贪婪联合动作或随机动作,并更新每个传感器基团的Q值函数;步骤5,重复步骤3~4,直至传感器基团的Q值函数收敛;步骤6,根据学习得到的传感器基团的Q值函数和当前目标所处的状态,使用一般最大和算法计算获得所有传感器的贪婪联合动作,供每个传感器执行。

    语音溯源取证方法及装置、设备及存储介质

    公开(公告)号:CN115083422A

    公开(公告)日:2022-09-20

    申请号:CN202210859678.X

    申请日:2022-07-21

    Abstract: 本公开涉及一种语音溯源取证方法及装置、设备及存储介质,所述方法包括:本提取待测试语音的至少两种不同的声学特征;对提取的待测试语音的至少两种不同的声学特征进行融合,得到第一融合声学特征;基于预先训练的语音溯源取证模型,从所述第一融合声学特征中提取帧级别的算法指纹特征,对帧级别的算法指纹特征进行池化平均,根据池化平均得到的特征加权平均向量和加权标准差向量计算段级别的算法指纹特征,以基于段级别的算法指纹特征预测出待测试语音的生成算法;将预测出的待测试语音的生成算法作为语音溯源取证结果,通过提取算法指纹,不仅可以判断音频的真实性,而且可以进一步溯源取证,得到虚假音频的生成来源。

Patent Agency Ranking