-
公开(公告)号:CN113792751A
公开(公告)日:2021-12-14
申请号:CN202110860109.2
申请日:2021-07-28
Applicant: 中国科学院自动化研究所
IPC: G06K9/62
Abstract: 本发明提供一种跨域行为识别方法、装置、设备及可读存储介质,涉及视觉识别技术领域,该方法包括以下步骤;将待预测数据输入至行为识别模型中,得到行为识别模型输出的视频动作识别结果;其中,行为识别模型通过对融合训练集和源域训练集训练得到,融合训练集为根据同类预测结果融合和比例渐进融合原则将目标域融合数据与源域训练集进行融合得到,目标域融合数据为根据预测结果和预测结果对应的置信度得分从目标域训练集选取得到,预测结果和置信度得分由将目标域训练集输入至预训练行为识别模型中得到,预训练行为识别模型通过对源域训练集进行训练得到,本发明能兼容域之间的差异,具有通用性并且兼顾了精确度的要求。
-
公开(公告)号:CN113221903B
公开(公告)日:2021-10-15
申请号:CN202110511242.7
申请日:2021-05-11
Applicant: 中国科学院自动化研究所
Abstract: 本发明涉及一种跨域自适应语义分割方法及系统,所述方法包括获取不同域训练数据集;对训练数据集进行迭代训练,建立熵值预测模型:根据熵值预测模型,计算目标域数据的熵值;对各熵值进行多元高斯拟合,通过最大期望算法,得到两个峰值的高斯分布;根据所述高斯分布,确定伪标签;根据伪标签,重新训练目标域数据,构造语义分割模型;基于所述语义分割模型,对待处理数据进行语义分割。本发明通过对不同域训练数据集进行迭代训练,建立熵值预测模型,进而计算熵值,通过多元高斯拟合,最大期望算法,得到高斯分布,确定目标域数据的伪标签,排除手工阈值的干扰,以便于准确构造基于伪标签的语义分割模型,从而实现对待处理数据的自动语义分割。
-
公开(公告)号:CN113158909A
公开(公告)日:2021-07-23
申请号:CN202110447553.1
申请日:2021-04-25
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于计算机视觉领域,具体涉及一种基于多目标跟踪的行为识别轻量化方法、系统、设备,旨在解决现有行为识别方法无法直接识别多目标视频数据中每个个体行为的问题。本发明方法包括:获取输入视频中t时刻的图像帧,作为输入图像;获取多个检测目标分别对应的检测框作为目标检测框;并提取各目标检测框的特征,作为第一特征;利用卡尔曼滤波算法预测t‑1时刻各追踪到的目标在t时刻图像帧中对应的检测框,并提取各检测框的特征,作为第二特征;将第一特征、第二特征进行匹配,获得视频中每个目标的跟踪序列;对各目标的跟踪序列,通过预构建的行为分类模型获取其对应的行为分类结果。本发明实现了多目标视频数据中每个个体行为的识别。
-
公开(公告)号:CN109101866A
公开(公告)日:2018-12-28
申请号:CN201810567647.0
申请日:2018-06-05
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于计算机视觉领域,具体涉及一种基于分割剪影的行人再识别方法及系统,旨在解决如何消除图像背景噪声,提高行人再识别准确率的问题。为此目的,本发明中的行人再识别方法包括:基于预先构建的行人再识别模型并根据待测行人的彩色图像及对应的分割剪影,获取待测行人的行人特征;分别计算行人特征与每个预设的行人身份特征之间的相似度;获取最大相似度对应的行人身份特征,并根据所获取的行人身份特征获取待测行人的身份信息。基于本发明的行人再识别方法可以较好的解决背景杂乱情况下的行人再识别问题,提高识别准确率。同时,本发明中的行人再识别系统能够执行并实现上述方法。
-
公开(公告)号:CN108596026A
公开(公告)日:2018-09-28
申请号:CN201810217938.7
申请日:2018-03-16
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于计算机视觉和模式识别领域,具体涉及一种基于双流生成对抗网络的跨视角步态识别装置及训练方法。旨在解决跨视角步态识别准确率不高的问题。具体包括:通过一个全局流生成对抗网络模型学习一个标准角度的全局流步态能量图像;利用三个局部流生成对抗网络模型学习标准角度的局部流步态能量图像;该方法中的全局流模型能够学到全局步态特征,在全局流模型的基础上,加入局部流网络,可以学到局部步态特征;通过在双流生成对抗网络的生成器上加入像素级约束可以恢复步态细节;通过将全局步态特征和局部步态特征进行融合,可以提升步态识别准确率。该方法对于步态图像具有极强的鲁棒性,可以较好的解决跨视角步态识别问题。
-
公开(公告)号:CN113158909B
公开(公告)日:2023-06-27
申请号:CN202110447553.1
申请日:2021-04-25
Applicant: 中国科学院自动化研究所
IPC: G06V40/20 , G06V10/764 , G06V10/82 , G06V20/40 , G06N3/0464 , G06N3/084
Abstract: 本发明属于计算机视觉领域,具体涉及一种基于多目标跟踪的行为识别轻量化方法、系统、设备,旨在解决现有行为识别方法无法直接识别多目标视频数据中每个个体行为的问题。本发明方法包括:获取输入视频中t时刻的图像帧,作为输入图像;获取多个检测目标分别对应的检测框作为目标检测框;并提取各目标检测框的特征,作为第一特征;利用卡尔曼滤波算法预测t‑1时刻各追踪到的目标在t时刻图像帧中对应的检测框,并提取各检测框的特征,作为第二特征;将第一特征、第二特征进行匹配,获得视频中每个目标的跟踪序列;对各目标的跟踪序列,通过预构建的行为分类模型获取其对应的行为分类结果。本发明实现了多目标视频数据中每个个体行为的识别。
-
公开(公告)号:CN114663536A
公开(公告)日:2022-06-24
申请号:CN202210118720.2
申请日:2022-02-08
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种图像压缩方法及装置,所述方法包括:获取待压缩图像;基于预处理规则将所述待压缩图像划分为多个图像块,并将所有所述待压缩图像块输入到预存的目标编码器中,以获取第一隐变量;将所述第一隐变量输入到预存的熵模型中,以获取第二隐变量;将所述第二隐变量输入到预存的目标解码器中,以获取压缩后的图像块,并根据所述压缩后的图像块获取压缩后的图像;本发明所述方法在图像压缩任务中引入Transformer模块并采用对称处理架构进行图像的编码和解码,提高了图像压缩效率。
-
公开(公告)号:CN111967442A
公开(公告)日:2020-11-20
申请号:CN202010920874.4
申请日:2020-09-04
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于计算机视觉、模式识别领域,具体涉及一种基于实例导向检测网络的行人搜索方法、系统、装置,旨在解决现有的行人搜索方法搜索准确率较低问题。本发明方法包括:获取输入视频中第t帧图像,作为第一图像;通过预训练的行人检测模型得到第一图像中各候选区域与第二图像的相似度并排序,排序后选取前N个候选区域作为检测区域;第二图像为预获取的待搜索行人目标的图像;基于各检测区域、第二图像,通过预训练的行人再识别模型得到行人目标的搜索结果。本发明提高了行人目标搜索的准确率。
-
公开(公告)号:CN111723814A
公开(公告)日:2020-09-29
申请号:CN202010507843.6
申请日:2020-06-05
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于深度学习、计算机视觉及模式识别领域,具体涉及了一种基于跨图像关联的弱监督图像语义分割方法、系统、装置,旨在解决弱监督采用的粗略标注带来的语义分割目标不完整、定位不准确、语义类别判断不准确的问题。本发明包括:通过跨图像间关联关系模块从多张同类别物体的图像间获取互补信息,得到融合特征;基于融合特征进行图像语义分割模型的训练;通过训练好的模型,获取单张输入图像或多张同类别物体图像组的语义分割结果。本发明从粗略的弱图像标注生成像素级的伪图像标注,并在模型训练过程中,从不同图像间获取互补信息,来弥补伪图像标注不全的不足,能够在仅依赖图像级标注的情况下,显著地提高弱监督语义分割模型的性能。
-
公开(公告)号:CN108681689A
公开(公告)日:2018-10-19
申请号:CN201810282478.6
申请日:2018-04-02
Applicant: 中国科学院自动化研究所
CPC classification number: G06K9/00348 , G06N3/0481 , G06N3/084
Abstract: 本发明属于计算机视觉领域,具体涉及一种基于生成对抗网络的帧率增强步态识别方法及装置,旨在降低识别图像的噪声,提高步态识别的准确率。该方法具体包括:首先通过一个生成对抗网络生成数据集中连续两帧之间的帧,然后将生成帧与原始帧合并计算步态能量图,然后通过步态能量图识别网络对个体进行识别。该方法中的生成对抗网络能够显著提高原始图像序列的帧率,同时生成的图像对噪声具有较好的鲁棒性,能够起到对步态能量图进行降噪的作用,同时在步态能量图识别网络中加入了新型边界比率损失函数,能够极好地平衡不同损失函数之间的量级,大大提升模型训练的稳定性。本方法能够明显提升跨视角及不跨视角的步态识别率。
-
-
-
-
-
-
-
-
-