-
公开(公告)号:CN117610643B
公开(公告)日:2024-10-11
申请号:CN202311532896.3
申请日:2023-11-16
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种离散化多智能体的深度强化学习方法及系统。所述方法包括:获取多智能体系统中的所有智能体的动作及所有智能体的观测;迭代执行至少一次第一训练过程,直至达到预设训练次数或多智能体系统对应的深度强化学习网络的损失函数收敛。本发明使用一种离散化处理的网络结构来表征多智能体系统的观测以及其他智能体的动作,该离散化网络以所有智能体的观测和其他智能体的动作作为输入,用于离散化智能体的智能体观测集合以及其他智能体的动作,能够减轻环境中噪声对智能体决策的影响,促进智能体的协作,提升多智能体系统的协作效率。
-
公开(公告)号:CN117610643A
公开(公告)日:2024-02-27
申请号:CN202311532896.3
申请日:2023-11-16
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种离散化多智能体的深度强化学习方法及系统。所述方法包括:获取多智能体系统中的所有智能体的动作及所有智能体的观测;迭代执行至少一次第一训练过程,直至达到预设训练次数或多智能体系统对应的深度强化学习网络的损失函数收敛。本发明使用一种离散化处理的网络结构来表征多智能体系统的观测以及其他智能体的动作,该离散化网络以所有智能体的观测和其他智能体的动作作为输入,用于离散化智能体的智能体观测集合以及其他智能体的动作,能够减轻环境中噪声对智能体决策的影响,促进智能体的协作,提升多智能体系统的协作效率。
-