-
公开(公告)号:CN113313132A
公开(公告)日:2021-08-27
申请号:CN202110875691.X
申请日:2021-07-30
Applicant: 中国科学院自动化研究所
Abstract: 本公开涉及一种对抗样本图像的确定方法、装置、电子设备及存储介质,上述方法包括:获取原始图像,并通过降维算法将所述原始图像转换为原始图像流形;调用图像搜索函数,以根据所述原始图像流形确定目标图像;通过神经网络模型,根据所述原始图像流形和所述目标图像,确定对抗样本图像,其中,所述神经网络模型已通过训练,学习到并保存有所述神经网络模型输入的图像和输出的目标特征之间的对应关系,所述对抗样本图像通过在所述神经网络模型的特征空间进行度量学习确定。采用上述技术手段,解决现有技术中,在生成对抗样本时,容易过度拟合训练模型的结构,从而造成相对较低的迁移性等问题。
-
公开(公告)号:CN114005170A
公开(公告)日:2022-02-01
申请号:CN202210002592.5
申请日:2022-01-05
Applicant: 中国科学院自动化研究所
Abstract: 本发明提出基于视觉对抗重构的DeepFake防御方法和系统。其中,方法包括:两阶段方法。在第一阶段,将真实人脸数据转化为潜在编码,它能够通过一个生成器逼真地重建真实图像。将这个问题看做GAN的逆向问题,训练一个编码器来生成潜在嵌入,将其作为初始化,然后再对其进行微调。在第二阶段,在第一阶段获得的潜在嵌入的临近域中搜索,以获得最优嵌入,该嵌入可以产生完美的重建并且使DeepFake失效。此过程中,潜在嵌入使用来自目标DeepFake模型的梯度信息进行优化,并限制在一个小的修改范围中,以满足视觉相似性要求。
-
公开(公告)号:CN114005170B
公开(公告)日:2022-03-25
申请号:CN202210002592.5
申请日:2022-01-05
Applicant: 中国科学院自动化研究所
Abstract: 本发明提出基于视觉对抗重构的DeepFake防御方法和系统。其中,方法包括:两阶段方法。在第一阶段,将真实人脸数据转化为潜在编码,它能够通过一个生成器逼真地重建真实图像。将这个问题看做GAN的逆向问题,训练一个编码器来生成潜在嵌入,将其作为初始化,然后再对其进行微调。在第二阶段,在第一阶段获得的潜在嵌入的临近域中搜索,以获得最优嵌入,该嵌入可以产生完美的重建并且使DeepFake失效。此过程中,潜在嵌入使用来自目标DeepFake模型的梯度信息进行优化,并限制在一个小的修改范围中,以满足视觉相似性要求。
-
公开(公告)号:CN113313132B
公开(公告)日:2021-11-09
申请号:CN202110875691.X
申请日:2021-07-30
Applicant: 中国科学院自动化研究所
Abstract: 本公开涉及一种对抗样本图像的确定方法、装置、电子设备及存储介质,上述方法包括:获取原始图像,并通过降维算法将所述原始图像转换为原始图像流形;调用图像搜索函数,以根据所述原始图像流形确定目标图像;通过神经网络模型,根据所述原始图像流形和所述目标图像,确定对抗样本图像,其中,所述神经网络模型已通过训练,学习到并保存有所述神经网络模型输入的图像和输出的目标特征之间的对应关系,所述对抗样本图像通过在所述神经网络模型的特征空间进行度量学习确定。采用上述技术手段,解决现有技术中,在生成对抗样本时,容易过度拟合训练模型的结构,从而造成相对较低的迁移性等问题。
-
-
-