-
公开(公告)号:CN111078836B
公开(公告)日:2023-08-08
申请号:CN201911259849.X
申请日:2019-12-10
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于自然语言处理技术领域,具体涉及一种基于外部知识增强的机器阅读理解方法、系统、装置,旨在解决现有机器阅读理解方法未利用三元组间的图结构信息,导致答案预测准确率较低的问题。本系统方法包括生成问题及原文文本中各实体的上下文表示;基于外部知识库,获取问题及原文文本中各实体的三元组集合及原文文本中各实体相邻实体的三元组集合;并基于三元组集合,通过外部知识图谱获取各实体的知识子图;通过图注意力网络更新融合知识子图,获取知识表示;通过哨兵机制将上下文表示和知识表示进行拼接,通过多层感知器和softmax分类器获取待回答问题的答案。本发明通过利用三元组之间的图结构信息,提高了答案预测的准确率。
-
公开(公告)号:CN111078836A
公开(公告)日:2020-04-28
申请号:CN201911259849.X
申请日:2019-12-10
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于自然语言处理技术领域,具体涉及一种基于外部知识增强的机器阅读理解方法、系统、装置,旨在解决现有机器阅读理解方法未利用三元组间的图结构信息,导致答案预测准确率较低的问题。本系统方法包括生成问题及原文文本中各实体的上下文表示;基于外部知识库,获取问题及原文文本中各实体的三元组集合及原文文本中各实体相邻实体的三元组集合;并基于三元组集合,通过外部知识图谱获取各实体的知识子图;通过图注意力网络更新融合知识子图,获取知识表示;通过哨兵机制将上下文表示和知识表示进行拼接,通过多层感知器和softmax分类器获取待回答问题的答案。本发明通过利用三元组之间的图结构信息,提高了答案预测的准确率。
-