-
公开(公告)号:CN109871237B
公开(公告)日:2021-04-09
申请号:CN201811495369.9
申请日:2018-12-07
Applicant: 中国科学院深圳先进技术研究院
IPC: G06F9/38
Abstract: 本发明涉及信息技术领域,具体而言,涉及一种基于机器学习的CPU与GPU异构SoC性能刻画方法,其包括以下步骤:S1:采集大性能数据;所述大性能数据包括CPU硬件事件数据与GPU硬件事件数据;S2:对采集的大性能数据进行处理;S3:对CPU与GPU进行性能刻画;S4:进行系统能耗采集与分析。本发明一方面用户可以根据在CPU和GPU端监控硬件事件得到能够反映人工智能程序性能特点,从而为优化人工智能程序提供指导;另一方面用户可以根据人工智能程序的性能特点,为适应人工智能程序而特定地优化编译器或计算机微体系结构提供指导,最后用户可以通过本框架中使用的监控策略和分析方法对CPU与GPU进行监控与分析。
-
公开(公告)号:CN109871237A
公开(公告)日:2019-06-11
申请号:CN201811495369.9
申请日:2018-12-07
Applicant: 中国科学院深圳先进技术研究院
IPC: G06F9/38
Abstract: 本发明涉及信息技术领域,具体而言,涉及一种基于机器学习的CPU与GPU异构SoC性能刻画方法,其包括以下步骤:S1:采集大性能数据;所述大性能数据包括CPU硬件事件数据与GPU硬件事件数据;S2:对采集的大性能数据进行处理;S3:对CPU与GPU进行性能刻画;S4:进行系统能耗采集与分析。本发明一方面用户可以根据在CPU和GPU端监控硬件事件得到能够反映人工智能程序性能特点,从而为优化人工智能程序提供指导;另一方面用户可以根据人工智能程序的性能特点,为适应人工智能程序而特定地优化编译器或计算机微体系结构提供指导,最后用户可以通过本框架中使用的监控策略和分析方法对CPU与GPU进行监控与分析。
-