基于注意力的多视角特征融合跨域推荐方法及装置

    公开(公告)号:CN113806630B

    公开(公告)日:2024-06-14

    申请号:CN202110896075.2

    申请日:2021-08-05

    Abstract: 本发明公开了一种基于注意力的多视角特征融合跨域推荐方法及装置,包括利用公共用户在源域的域特性特征#imgabs0#公共用户与物品在目标域的域特性特征#imgabs1#与域特性特征IT、公共用户与物品在源域与目标域之间的潜在可迁移特征#imgabs2#与潜在可迁移特征#imgabs3#进行融合;基于融合结果进行训练;在最优模型的基础上,获取最优偏好预测集,以对公共用户进行目标域中的物品推荐。本发明解决了源域和目标域之间潜在可迁移特征的捕获问题,对不同类型的特征设置不同的权值,实现不同类型特征的有机结合和充分利用,进而提高推荐系统的性能。

    一种基于异构信息网络的个性化推荐方法

    公开(公告)号:CN110245285A

    公开(公告)日:2019-09-17

    申请号:CN201910357967.8

    申请日:2019-04-30

    Abstract: 本发明公开了一种基于异构信息网络的个性化推荐方法,本方法通过基于注意力的特征增强模块对不同元图上用户和物品潜在特征的重要性进行学习,降低了无用的潜在特征对评分预测所带来的干扰,增强了有用潜在特征对评分预测的贡献力;同时利用基于分层次特征交互的评分预测模块对特征间的不同相互关系进行学习,不但考虑用户和物品各自加权潜在特征之间的内在联系,而且考虑用户或物品与其加权潜在特征之间的相关性;然后通过用户和物品间特征的融合,使得各特征间的二阶线性交互关系得到了充分挖掘。本发明通过多层感知机和因子分解机的使用,使得各特征间的高阶非线性交互关系得到了全面利用和高效组合,大大提高了推荐系统的性能。

    基于注意力的多视角特征融合跨域推荐方法及装置

    公开(公告)号:CN113806630A

    公开(公告)日:2021-12-17

    申请号:CN202110896075.2

    申请日:2021-08-05

    Abstract: 本发明公开了一种基于注意力的多视角特征融合跨域推荐方法及装置,包括利用公共用户在源域的域特性特征公共用户与物品在目标域的域特性特征与域特性特征IT、公共用户与物品在源域与目标域之间的潜在可迁移特征与潜在可迁移特征进行融合;基于融合结果进行训练;在最优模型的基础上,获取最优偏好预测集,以对公共用户进行目标域中的物品推荐。本发明解决了源域和目标域之间潜在可迁移特征的捕获问题,对不同类型的特征设置不同的权值,实现不同类型特征的有机结合和充分利用,进而提高推荐系统的性能。

    一种基于异构信息网络的个性化推荐方法

    公开(公告)号:CN110245285B

    公开(公告)日:2021-07-13

    申请号:CN201910357967.8

    申请日:2019-04-30

    Abstract: 本发明公开了一种基于异构信息网络的个性化推荐方法,本方法通过基于注意力的特征增强模块对不同元图上用户和物品潜在特征的重要性进行学习,降低了无用的潜在特征对评分预测所带来的干扰,增强了有用潜在特征对评分预测的贡献力;同时利用基于分层次特征交互的评分预测模块对特征间的不同相互关系进行学习,不但考虑用户和物品各自加权潜在特征之间的内在联系,而且考虑用户或物品与其加权潜在特征之间的相关性;然后通过用户和物品间特征的融合,使得各特征间的二阶线性交互关系得到了充分挖掘。本发明通过多层感知机和因子分解机的使用,使得各特征间的高阶非线性交互关系得到了全面利用和高效组合,大大提高了推荐系统的性能。

Patent Agency Ranking