基于扰动一致性自集成的半监督图像检索方法及装置

    公开(公告)号:CN112883216A

    公开(公告)日:2021-06-01

    申请号:CN202110226266.8

    申请日:2021-03-01

    Abstract: 本发明公开了一种基于扰动一致性自集成的半监督图像检索方法及装置,包括将图像输入训练后的半监督图像特征提取模型,得到该图像的特征,其中所述半监督图像特征提取模型包括:一卷积神经网络、一哈希层和一扰动一致性自集成模块;将图像的特征转换为图像离散的二值哈希码;依据二值哈希码进行检索,得到图像检索结果。本发明通过集成同一个样本在不同数据增强条件下的特征,能够发现每个类别的判别特征;通过设计的扰动一致性损失函数最大化无标记数据的哈希层输出与对应的集成特征的相似性,充分的利用了无标记数据提升网络的泛化能力;能够取得更好的检索效果。

    基于扰动一致性自集成的半监督图像检索方法及装置

    公开(公告)号:CN112883216B

    公开(公告)日:2022-09-16

    申请号:CN202110226266.8

    申请日:2021-03-01

    Abstract: 本发明公开了一种基于扰动一致性自集成的半监督图像检索方法及装置,包括将图像输入训练后的半监督图像特征提取模型,得到该图像的特征,其中所述半监督图像特征提取模型包括:一卷积神经网络、一哈希层和一扰动一致性自集成模块;将图像的特征转换为图像离散的二值哈希码;依据二值哈希码进行检索,得到图像检索结果。本发明通过集成同一个样本在不同数据增强条件下的特征,能够发现每个类别的判别特征;通过设计的扰动一致性损失函数最大化无标记数据的哈希层输出与对应的集成特征的相似性,充分的利用了无标记数据提升网络的泛化能力;能够取得更好的检索效果。

Patent Agency Ranking