-
公开(公告)号:CN118332375A
公开(公告)日:2024-07-12
申请号:CN202410400399.6
申请日:2024-04-03
Applicant: 中国科学院信息工程研究所
IPC: G06F18/24 , G06F18/22 , G06F18/21 , G06N3/0985 , G06N3/0895 , G06N3/042 , G06N3/048 , G06N3/0464
Abstract: 本发明属于计算机数据挖掘分析技术领域,具体涉及一种基于任务级别关系建模的小样本图节点分类方法和装置。本发明利用对比学习方法来捕获元学习任务间的关系,通过拉近元学习任务图和原始图之间的距离捕获元任务间的相关性,通过拉远不同元学习任务图之间的距离捕获元任务间的差异性,整个方案遵循图元学习范式,对比学习作为子模块加入到图元学习框架中,最终通过联合优化完成小样本图节点分类任务。本发明设计了新的图元学习和图对比学习联合框架,利用对比学习建模了元学习任务间的复杂关系,在不引入额外标注信息的情况下,有效提升了小样本图节点分类任务的性能。
-
公开(公告)号:CN118503775A
公开(公告)日:2024-08-16
申请号:CN202410499002.3
申请日:2024-04-24
Applicant: 中国科学院信息工程研究所
IPC: G06F18/241 , G06N3/042 , G06N3/082
Abstract: 本发明公开了基于属性图表示的用户网络节点或边的分类方法及系统,属于图数据处理领域,针对用户网络的属性信息构建属性图,计算所有邻居节点的属性信息和拓扑信息对目标节点的全局表示产生的影响;再将这两种影响与目标节点的全局表示进行融合,迭代得到目标节点最终的低维表示;输入到多层感知器中进行分类预测。本发明能够解决现有基于图神经网络的属性图表示学习方法中存在的属性扰动、过平滑问题以及属性、拓扑信息影响差异未被充分建模等问题,以及这些问题对最终分类预测造成的不良影响。
-