-
公开(公告)号:CN112199717B
公开(公告)日:2024-03-22
申请号:CN202011065611.6
申请日:2020-09-30
Applicant: 中国科学院信息工程研究所
IPC: G06F21/62 , G06N3/0464 , G06N3/0442 , G06N3/045 , G06N3/0895 , G06N20/20
Abstract: 本发明提供一种基于少量公共数据的隐私模型训练方法及电子装置,包括:使用若干训练得到N个神经网络教师模型;将少量的公共数据xi分别输入N个神经网络教师模型,得到各公共数据xi对各标签k的统计投票结果;对各统计投票结果添加噪声,获取满足差分隐私原理的公共数据xi及相应标签;通过大量的随机噪声向量与一预训练判别神经网络,优化对抗生成网络,并生成大量无标注数据;通过满足差分隐私原理的公共数据xi及相应标签、大量无标注数据对预训练的自编码器联合训练学生模型,得到隐私学生模型。本发明只需少量公共数据即可训练一个隐私学生模型,实现对敏感数据的物理隔离和网络隔离,解决了隐私学生模型的精确度不高这一问题。
-
公开(公告)号:CN112199717A
公开(公告)日:2021-01-08
申请号:CN202011065611.6
申请日:2020-09-30
Applicant: 中国科学院信息工程研究所
Abstract: 本发明提供一种基于少量公共数据的隐私模型训练方法及电子装置,包括:使用若干训练得到N个神经网络教师模型;将少量的公共数据xi分别输入N个神经网络教师模型,得到各公共数据xi对各标签k的统计投票结果;对各统计投票结果添加噪声,获取满足差分隐私原理的公共数据xi及相应标签;通过大量的随机噪声向量与一预训练判别神经网络,优化对抗生成网络,并生成大量无标注数据;通过满足差分隐私原理的公共数据xi及相应标签、大量无标注数据对预训练的自编码器联合训练学生模型,得到隐私学生模型。本发明只需少量公共数据即可训练一个隐私学生模型,实现对敏感数据的物理隔离和网络隔离,解决了隐私学生模型的精确度不高这一问题。
-