-
公开(公告)号:CN113887642B
公开(公告)日:2024-06-21
申请号:CN202111183417.2
申请日:2021-10-11
Applicant: 中国科学院信息工程研究所
IPC: G06F18/2411 , G06F18/2415 , G06F18/214 , G06N3/045
Abstract: 本发明涉及一种基于开放世界的网络流量分类方法及系统,其方法包括:步骤S1:构建基于孪生神经网络的SHE‑Net模型,以开放世界网络流量作为样本集,获取样本集的低维特征向量,低维特征向量中含有序列特征向量和空间特征向量;同时,构建互补损失函数训练困难样本;其中,SHE‑Net模型包括:字节编码器、包编码器和流编码器;步骤S2:根据低维特征向量,利用基于阈值和支持向量机的检测器,对开放世界网络流量进行分类和预测。本发明提供的方法构建了双分支三级编码器的SHE‑Net模型,增强网络流量识别的鲁棒性和泛化性,并构建互补损失函数,解决了孪生神经网络的对比损失函数的收敛不稳定的问题。
-
公开(公告)号:CN113887642A
公开(公告)日:2022-01-04
申请号:CN202111183417.2
申请日:2021-10-11
Applicant: 中国科学院信息工程研究所
Abstract: 本发明涉及一种基于开放世界的网络流量分类方法及系统,其方法包括:步骤S1:构建基于孪生神经网络的SHE‑Net模型,以开放世界网络流量作为样本集,获取样本集的低维特征向量,低维特征向量中含有序列特征向量和空间特征向量;同时,构建互补损失函数训练困难样本;其中,SHE‑Net模型包括:字节编码器、包编码器和流编码器;步骤S2:根据低维特征向量,利用基于阈值和支持向量机的检测器,对开放世界网络流量进行分类和预测。本发明提供的方法构建了双分支三级编码器的SHE‑Net模型,增强网络流量识别的鲁棒性和泛化性,并构建互补损失函数,解决了孪生神经网络的对比损失函数的收敛不稳定的问题。
-