一种个性化兴趣点推荐方法及系统

    公开(公告)号:CN111949877B

    公开(公告)日:2023-02-28

    申请号:CN202010816756.9

    申请日:2020-08-14

    Abstract: 本发明公开了一种个性化兴趣点推荐方法及系统。本方法包括:1)根据用户及兴趣点的历史签到信息,获取用户集合、兴趣点集合和每个用户兴趣点集合;2)将每个兴趣点信息进行编码得到兴趣点向量;3)根据兴趣点签到时间信息,编码得到对应用户的时间特征向量;4)根据兴趣点签到天气信息,编码得到对应用户的天气特征向量;5)根据兴趣点签到信息,编码得到对应用户是空间特征向量;6)根据用户的上述向量,得到对应用户兴趣点矩阵;7)根据用户兴趣点矩阵训练LSTM‑Autoencoder模型,对签到序列进行修正,得到用户兴趣点访问偏好;8)根据目标用户的兴趣点访问偏好,给定时间信息、天气信息,向目标用户进行兴趣点推荐。

    一种改进的基于事件演化图的脚本学习方法和装置

    公开(公告)号:CN114462379B

    公开(公告)日:2025-04-25

    申请号:CN202110265366.1

    申请日:2021-03-11

    Abstract: 本发明涉及一种改进的基于事件演化图的脚本学习方法和装置。该方法包括:利用由具体事件链构成的具体事件网络构建抽象的事件演化图;挖掘事件演化图中蕴含的事件演化知识,以学习上下文事件和候选事件的初始嵌入表示;将上下文事件和候选事件的初始嵌入表示输入双向LSTM网络,得到上下文事件和候选事件的更新后的嵌入表示,其中包含事件链的时序信息以及事件演化图中蕴含的事件演化知识;利用更新后的嵌入表示对上下文事件和候选事件进行相似度计算,得到每一个候选事件的相似度得分,将相似度得分概率化,选择概率最高的候选事件作为最终预测的事件。本发明对于脚本事件预测具有较高的准确度,能够用于隐私窃取攻击事件预测等领域。

    一种RDN超分辨网络的训练方法及图像生成方法

    公开(公告)号:CN112598581B

    公开(公告)日:2023-10-24

    申请号:CN202011606834.9

    申请日:2020-12-30

    Abstract: 本发明公开了一种RDN超分辨网络的训练方法及图形生成方法,其步骤包括:1)将低分辨率样本图像输入到生成器,生成高分辨率图像;2)将生成的高分辨率图像作为假数据,计算该假数据与对应标签数据之间的损失值;3)提取该假数据的特征与对应标签数据的特征,然后计算特征之间的损失值;4)将生成的高分辨率图像及其多个下采样数据作为假数据,根据该假数据与对应真实数据计算生成器中损失函数的损失值;5)将生成的高分辨率图像及其多个下采样数据作为假数据,根据该假数据与对应真实数据计算判别器中损失函数的损失值,进行判别器参数更新;6)将步骤2)~4)所得损失值加权在一起,作为生成器的损失,进行生成器的参数更新。

    一种RDN超分辨网络的训练方法及图像生成方法

    公开(公告)号:CN112598581A

    公开(公告)日:2021-04-02

    申请号:CN202011606834.9

    申请日:2020-12-30

    Abstract: 本发明公开了一种RDN超分辨网络的训练方法及图形生成方法,其步骤包括:1)将低分辨率样本图像输入到生成器,生成高分辨率图像;2)将生成的高分辨率图像作为假数据,计算该假数据与对应标签数据之间的损失值;3)提取该假数据的特征与对应标签数据的特征,然后计算特征之间的损失值;4)将生成的高分辨率图像及其多个下采样数据作为假数据,根据该假数据与对应真实数据计算生成器中损失函数的损失值;5)将生成的高分辨率图像及其多个下采样数据作为假数据,根据该假数据与对应真实数据计算判别器中损失函数的损失值,进行判别器参数更新;6)将步骤2)~4)所得损失值加权在一起,作为生成器的损失,进行生成器的参数更新。

    一种改进的基于事件演化图的脚本学习方法和装置

    公开(公告)号:CN114462379A

    公开(公告)日:2022-05-10

    申请号:CN202110265366.1

    申请日:2021-03-11

    Abstract: 本发明涉及一种改进的基于事件演化图的脚本学习方法和装置。该方法包括:利用由具体事件链构成的具体事件网络构建抽象的事件演化图;挖掘事件演化图中蕴含的事件演化知识,以学习上下文事件和候选事件的初始嵌入表示;将上下文事件和候选事件的初始嵌入表示输入双向LSTM网络,得到上下文事件和候选事件的更新后的嵌入表示,其中包含事件链的时序信息以及事件演化图中蕴含的事件演化知识;利用更新后的嵌入表示对上下文事件和候选事件进行相似度计算,得到每一个候选事件的相似度得分,将相似度得分概率化,选择概率最高的候选事件作为最终预测的事件。本发明对于脚本事件预测具有较高的准确度,能够用于隐私窃取攻击事件预测等领域。

    一种个性化兴趣点推荐方法及系统

    公开(公告)号:CN111949877A

    公开(公告)日:2020-11-17

    申请号:CN202010816756.9

    申请日:2020-08-14

    Abstract: 本发明公开了一种个性化兴趣点推荐方法及系统。本方法包括:1)根据用户及兴趣点的历史签到信息,获取用户集合、兴趣点集合和每个用户兴趣点集合;2)将每个兴趣点信息进行编码得到兴趣点向量;3)根据兴趣点签到时间信息,编码得到对应用户的时间特征向量;4)根据兴趣点签到天气信息,编码得到对应用户的天气特征向量;5)根据兴趣点签到信息,编码得到对应用户是空间特征向量;6)根据用户的上述向量,得到对应用户兴趣点矩阵;7)根据用户兴趣点矩阵训练LSTM-Autoencoder模型,对签到序列进行修正,得到用户兴趣点访问偏好;8)根据目标用户的兴趣点访问偏好,给定时间信息、天气信息,向目标用户进行兴趣点推荐。

Patent Agency Ranking