-
公开(公告)号:CN110581840B
公开(公告)日:2020-10-16
申请号:CN201910671353.7
申请日:2019-07-24
Applicant: 中国科学院信息工程研究所
Abstract: 本发明公开一种基于双层异质集成学习器的入侵检测方法,包括以下步骤:使用PKPCA数据降维算法对原始数据进行降维处理,得到预处理数据集;使用N个分类器对预处理数据集进行处理,使用分层十折交叉验证方法防止过拟合;采用分类器评估算法选择表现最好的M个分类器作为异质学习器,其中2≤M
-
公开(公告)号:CN109344697B
公开(公告)日:2021-11-09
申请号:CN201810934862.X
申请日:2018-08-16
Applicant: 中国科学院信息工程研究所
IPC: G06K9/00
Abstract: 本发明公开了一种对抗性竞赛中的精彩时刻识别方法。本方法为:1)根据目标竞赛的竞赛类型,初始化反映竞赛过程的各项指标;2)从该目标竞赛的竞赛过程获取各项指标的取值并进行插值处理,得到该目标竞赛各项指标的竞赛过程函数;3)对各竞赛过程函数进行精彩时刻判别,得到竞赛中各个时间片段的精彩程度值;4)根据所述精彩程度值与一设定阈值进行比较,确定出该目标竞赛的精彩时刻。本发明能够从比赛中抽取出被识别为精彩时刻的时间区间,从而得到整场比赛的精彩时刻所属时段。
-
公开(公告)号:CN109951444B
公开(公告)日:2020-05-22
申请号:CN201910086039.2
申请日:2019-01-29
Applicant: 中国科学院信息工程研究所
IPC: H04L29/06
Abstract: 本发明公开了一种加密匿名网络流量识别方法。本方法为:1)从加密匿名网络流量数据集中提取每一流量文件的多粒度级别特征,包括流特征、包特征、主机行为特征、TCP头部相关特征、IP头部相关特征;2)对步骤1)得到的特征进行过滤,过滤掉冗余特征以及与流量识别不相关或者相关度低于设定阈值的特征;3)利用步骤2)选取的特征训练XGBoost模型,然后利用该XGBoost模型对待识别的匿名网络流量进行识别。本发明在整体准确率、精确率、召回率和F1值对模型的性能方面均优于现有的基线识别方法。
-
公开(公告)号:CN110581840A
公开(公告)日:2019-12-17
申请号:CN201910671353.7
申请日:2019-07-24
Applicant: 中国科学院信息工程研究所
Abstract: 本发明公开一种基于双层异质集成学习器的入侵检测方法,包括以下步骤:使用PKPCA数据降维算法对原始数据进行降维处理,得到预处理数据集;使用N个分类器对预处理数据集进行处理,使用分层十折交叉验证方法防止过拟合;采用分类器评估算法选择表现最好的M个分类器作为异质学习器,其中2≤M
-
公开(公告)号:CN109344697A
公开(公告)日:2019-02-15
申请号:CN201810934862.X
申请日:2018-08-16
Applicant: 中国科学院信息工程研究所
IPC: G06K9/00
Abstract: 本发明公开了一种对抗性竞赛中的精彩时刻识别方法。本方法为:1)根据目标竞赛的竞赛类型,初始化反映竞赛过程的各项指标;2)从该目标竞赛的竞赛过程获取各项指标的取值并进行插值处理,得到该目标竞赛各项指标的竞赛过程函数;3)对各竞赛过程函数进行精彩时刻判别,得到竞赛中各个时间片段的精彩程度值;4)根据所述精彩程度值与一设定阈值进行比较,确定出该目标竞赛的精彩时刻。本发明能够从比赛中抽取出被识别为精彩时刻的时间区间,从而得到整场比赛的精彩时刻所属时段。
-
公开(公告)号:CN109951444A
公开(公告)日:2019-06-28
申请号:CN201910086039.2
申请日:2019-01-29
Applicant: 中国科学院信息工程研究所
IPC: H04L29/06
Abstract: 本发明公开了一种加密匿名网络流量识别方法。本方法为:1)从加密匿名网络流量数据集中提取每一流量文件的多粒度级别特征,包括流特征、包特征、主机行为特征、TCP头部相关特征、IP头部相关特征;2)对步骤1)得到的特征进行过滤,过滤掉冗余特征以及与流量识别不相关或者相关度低于设定阈值的特征;3)利用步骤2)选取的特征训练XGBoost模型,然后利用该XGBoost模型对待识别的匿名网络流量进行识别。本发明在整体准确率、精确率、召回率和F1值对模型的性能方面均优于现有的基线识别方法。
-
-
-
-
-