-
公开(公告)号:CN111653835A
公开(公告)日:2020-09-11
申请号:CN202010561272.4
申请日:2020-06-18
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明涉及一种大功率高温熔盐电池,其金属外壳为一端敞开的管结构,正极和负极分别由金属丝卷曲而成,隔膜为具有电子绝缘性和氧离子传导功能的固态电解质隔层,隔绝管为两端敞开的中通管,正极和负极在金属外壳的内部通过隔膜保持间隔开,隔绝管从金属外壳的敞开端伸入金属外壳的内部直至抵接隔膜,正极容纳于隔绝管的内部以通过隔绝管与金属外壳保持间隔开,正极引线与正极连接并从隔绝管中伸出,负极引线在金属外壳内连接负极和金属外壳。根据本发明的大功率高温熔盐电池,在经典的半开放熔盐电池结构基础上,提供了一套完整的适用于高温熔盐电池放大试验的电池结构,可根据功率要求设计相应的电池规格。
-
公开(公告)号:CN111653791A
公开(公告)日:2020-09-11
申请号:CN202010562022.2
申请日:2020-06-18
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明涉及一种碱金属掺杂的铁空电池负极的制备方法,其包括步骤:将氧化铁和碱金属盐混合;升温至碱金属盐熔化后保持恒温,不断搅拌使得氧化铁和碱金属盐充分接触发生固液间反应,形成碱金属嵌入的铁酸盐;自然冷却至室温后,去除多余的碱金属盐,得到碱金属掺杂的铁空电池负极。本发明还提供由上述的制备方法得到的铁空电池负极。根据本发明的碱金属掺杂的铁空电池负极的制备方法,利用熔盐法——碱金属盐在高于熔点的温度下熔化并与氧化铁发生反应实现掺杂,得到可用作铁空电池的氧化铁负极材料。根据本发明的铁空电池负极,在高温下具有高催化活性,适用于高温熔盐铁空电池。
-
公开(公告)号:CN113675407A
公开(公告)日:2021-11-19
申请号:CN202110968369.1
申请日:2021-08-23
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明涉及一种全固态铁空电池的制备方法,其包括如下步骤:S1,均匀混合活性物质与添加剂以提供负极浆料,其中,活性物质为Fe2O3粉体,添加剂为TiO2纳米粉体,质量比Fe2O3:TiO2的范围为1~9;S2,将负极浆料喷涂在固态电解质上后进行共烧结以形成直接结合在固态电解质上的负极。本发明还提供由上述的制备方法得到的全固态铁空电池。本发明通过在活性物质Fe2O3中添加高温下具有电子和离子双重传导特征的TiO2纳米粉体,控制能够实现电池高效循环充放电的添加剂加入量,实现了全固态铁空电池的高效循环测试,有效缓解了纯氧化铁电极电阻过大所引发的电池能量损耗高的问题,实现高温铁空电池的高效率充放电过程。
-
公开(公告)号:CN112875761A
公开(公告)日:2021-06-01
申请号:CN202110069739.8
申请日:2021-01-19
Applicant: 中国科学院上海应用物理研究所
IPC: C01G49/06 , C01G23/053 , C01F17/229 , C01F17/10 , C23C18/44 , H01M12/06 , H01M4/52
Abstract: 本发明涉及一种高温熔盐铁空气电池电极材料的制备方法,其包括提供普鲁士蓝纳米材料;碱处理普鲁士蓝纳米材料,形成具有疏松多孔结构的氢氧化铁材料;银、钛和/或镧的盐溶液在氢氧化铁材料上发生反应,使得银、钛和/或镧元素沉积在氢氧化铁材料上形成金属沉积材料;退火处理金属沉积电极材料获得高温熔盐铁空气电池电极材料,该高温熔盐铁空气电池电极材料为均匀沉积有银、二氧化钛和/或氧化镧的氧化铁材料。本发明还提供由上述的制备方法得到的高温熔盐铁空气电池电极材料。根据本发明的高温熔盐铁空气电池电极材料,银、二氧化钛和/或氧化镧均匀地沉积在氧化铁材料上,解决现有的金属沉积电极材料上沉积的金属元素分布不均匀或团聚的问题。
-
公开(公告)号:CN113675407B
公开(公告)日:2022-08-09
申请号:CN202110968369.1
申请日:2021-08-23
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明涉及一种全固态铁空电池的制备方法,其包括如下步骤:S1,均匀混合活性物质与添加剂以提供负极浆料,其中,活性物质为Fe2O3粉体,添加剂为TiO2纳米粉体,质量比Fe2O3:TiO2的范围为1~9;S2,将负极浆料喷涂在固态电解质上后进行共烧结以形成直接结合在固态电解质上的负极。本发明还提供由上述的制备方法得到的全固态铁空电池。本发明通过在活性物质Fe2O3中添加高温下具有电子和离子双重传导特征的TiO2纳米粉体,控制能够实现电池高效循环充放电的添加剂加入量,实现了全固态铁空电池的高效循环测试,有效缓解了纯氧化铁电极电阻过大所引发的电池能量损耗高的问题,实现高温铁空电池的高效率充放电过程。
-
公开(公告)号:CN113381007B
公开(公告)日:2022-03-29
申请号:CN202110643134.5
申请日:2021-06-09
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明涉及一种共沉淀制备高温熔盐电池用的铁酸钠‑铁酸镧异质结构纳米电极材料的方法,其包括将硝酸镧和硝酸铁溶解于水中;加入氢氧化钠溶液得到氢氧化镧和氢氧化铁的固体混合物;将固体混合物研磨成粉末,将粉末在400℃‑600℃下退火得到铁酸钠‑铁酸镧异质结构纳米电极材料。根据本发明的共沉淀制备铁酸钠‑铁酸镧异质纳米电极材料的方法,金属盐为硝酸镧和硝酸铁,沉淀剂为可以提供钠元素的氢氧化钠,利用钠的低熔点来降低合成温度,即相对于现有技术中的700‑1000℃的退火温度,本发明在400℃‑600℃的较低温度下即可形成铁酸镧相,通过调控镧铁摩尔比的投入,生成无杂质的铁酸钠‑铁酸镧异质结构纳米电极材料。
-
公开(公告)号:CN111653836B
公开(公告)日:2021-08-13
申请号:CN202010561288.5
申请日:2020-06-18
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明涉及一种具有功能层的高温熔盐电池,其包括熔盐电解质、固体电解质和功能层,功能层为位于固体电解质和熔盐电解质之间的具有高氧离子传导的电解质,功能层包括占75wt%以上的氧化铈。本发明还提供上述具有功能层的高温熔盐电池的制备方法。根据本发明的具有功能层的高温熔盐电池,采用氧化铈作为功能层的基体,具有良好的耐腐蚀性和氧离子传导功能,能够降低熔盐电解质对固体电解质的溶解和腐蚀,同时避免增加电池内阻和内部消耗,可以很好地满足高温熔盐电池的使用要求。
-
公开(公告)号:CN112830778A
公开(公告)日:2021-05-25
申请号:CN202110069737.9
申请日:2021-01-19
Applicant: 中国科学院上海应用物理研究所
IPC: C04B35/48 , C04B35/50 , C04B35/622 , C04B35/64 , H01M8/1253 , H01M8/126
Abstract: 本发明涉及一种快速烧结固态电解质的方法,其包括将固态电解质纳米粉末压制成片材;提供具有彼此间隔开的两片碳纸的快速烧结装置,将片材夹持在碳纸之间,给碳纸通电使碳纸在电流作用下产生焦耳热以通过调节碳纸的温度进行烧结,得到致密固态电解质。本发明还提供一种根据上述方法得到的致密固态电解质。本发明又提供一种上述致密固态电解质在熔盐电池中的应用。根据本发明的快速烧结固态电解质的方法,通过廉价的碳纸在电流作用下产生焦耳热,短时间内大量聚集的焦耳热可以通过热辐射和热传导的方式对固态电解质片材进行快速烧结,加快固态电解质的高通量筛选的进度。
-
公开(公告)号:CN111653790B
公开(公告)日:2021-12-03
申请号:CN202010561273.9
申请日:2020-06-18
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明涉及一种全固态铁空电池,其包括正极、负极、隔膜和固态电解质,其中,正极和负极分别设置于固态电解质的相对两侧,隔膜被设置于负极和固态电解质之间形成夹层结构,负极为碱金属掺杂的氧化铁形成的铁酸盐材料,正极为具有高效氧化还原催化活性的金属或金属氧化物材料,固态电解质为能够高效传导氧离子的电解质材料,隔膜为薄膜状或片状的具有氧离子传导性和电子绝缘性的材料。根据本发明的全固态铁空电池,负极通过碱金属掺杂进入氧化铁晶格中,能够显著提高铁电极的电化学反应活性,改善电池过充带来的安全隐患问题,进而显著提高铁空电池的性能,隔膜设置于固体电解质与负极之间,能够有效缓解电池漏电问题。
-
公开(公告)号:CN113380999A
公开(公告)日:2021-09-10
申请号:CN202110643133.0
申请日:2021-06-09
Applicant: 中国科学院上海应用物理研究所
Abstract: 本发明涉及一种熔盐电池用的银‑氧化铁多孔纳米立方体负极材料的制备方法,其包括提供普鲁士蓝;将普鲁士蓝分散到水或乙醇中形成分散液;将硝酸银溶液加入分散液中搅拌形成银和普鲁士蓝纳米立方体,银离子向普鲁士蓝渗透以进入普鲁士蓝纳米立方体的空位;将银和普鲁士蓝纳米立方体放入管式炉煅烧得到银‑氧化铁多孔纳米立方体。根据本发明的熔盐电池用的银‑氧化铁多孔纳米立方体负极材料的制备方法,银离子向普鲁士蓝渗透的过程在溶液中进行,可以实现沉积金属元素的均匀分散,该制备方法操作简便,成本低,合成效率高,经过硝酸银和普鲁士蓝浸渍,可以实现银离子进入普鲁士蓝纳米立方体的空位,利用金属框架约束银离子,达到结构稳定的效果。
-
-
-
-
-
-
-
-
-