一种基于场景语言感知引导的多模态无人机目标检测框架

    公开(公告)号:CN119360243B

    公开(公告)日:2025-05-02

    申请号:CN202411395067.X

    申请日:2024-10-08

    Abstract: 本发明属于计算机视觉技术领域,公开了一种基于场景语言感知引导的多模态无人机目标检测框架。首先,将视觉‑语言预训练模型嵌入多模态目标检测框架中,提出了场景语言感知模块,利用视觉‑语言预训练模型为模型提供场景智能感知和理解能力。其次,通过条件参数生成模块根据当前场景和目标特征动态生成融合参数,通过为不同目标定制个性化的融合模式提升模型对场景变化的适应能力。最后,设计了多模态动态解码器,建立了动态对称融合机制,通过动态挖掘多模态数据间的复杂互补关联实现多模态特征融合,并根据当前场景实时调整不同模态的重要性,将DETR的解码机制从单模态扩展到多模态,为多模态无人机目标检测提供了无需先验框的新范式。

    一种基于场景语言感知引导的多模态无人机目标检测框架

    公开(公告)号:CN119360243A

    公开(公告)日:2025-01-24

    申请号:CN202411395067.X

    申请日:2024-10-08

    Abstract: 本发明属于计算机视觉技术领域,公开了一种基于场景语言感知引导的多模态无人机目标检测框架。首先,将视觉‑语言预训练模型嵌入多模态目标检测框架中,提出了场景语言感知模块,利用视觉‑语言预训练模型为模型提供场景智能感知和理解能力。其次,通过条件参数生成模块根据当前场景和目标特征动态生成融合参数,通过为不同目标定制个性化的融合模式提升模型对场景变化的适应能力。最后,设计了多模态动态解码器,建立了动态对称融合机制,通过动态挖掘多模态数据间的复杂互补关联实现多模态特征融合,并根据当前场景实时调整不同模态的重要性,将DETR的解码机制从单模态扩展到多模态,为多模态无人机目标检测提供了无需先验框的新范式。

Patent Agency Ranking