一种基于边缘信息引导的上下文聚合图像去雨方法

    公开(公告)号:CN114677306B

    公开(公告)日:2022-11-15

    申请号:CN202210319123.6

    申请日:2022-03-29

    Abstract: 本发明公开了一种基于边缘信息引导的上下文聚合图像去雨方法,旨在解决现阶段去雨方法忽略图像本身的纹理信息以及边缘信息的问题,其新颖之处在于设计了一个多尺度信息网络,其中包括了用于获取粗调图像去雨信息的上分支图像去雨网络和用于获取图像边缘信息的下分支边缘信息检测网络,且包括了上下文聚合模块,此模块用于聚合处理上下文信息,并利用聚合处理后的信息对粗调图像去雨信息进行引导,增强上分支图像去雨网络对图像细节信息的表征能力。实验结果表明该方法在完成图像去雨的同时使图像获得更加丰富的纹理信息和边缘信息。

    一种基于特征解耦网络的静脉识别方法

    公开(公告)号:CN115457611B

    公开(公告)日:2023-04-21

    申请号:CN202211293367.8

    申请日:2022-10-21

    Abstract: 本发明公开了一种基于特征解耦网络的静脉识别方法,设计高鲁棒性静脉图像分割模型,获取高质量的静脉形状特征二值分割图,构建基于多尺度注意力残差模块的静脉形状纹理特征解耦网络,实现静脉图像纹理和形状特征的自适应解耦,提出权值引导的高判别深度特征学习模块,增强了静脉深度特征表示能力。本发明减少了纹理信息中光照信息对于静脉深度特征表示能力的影响,增强了静脉纹理特征和形状特征的融合效果,提高了静脉识别方法的性能。

    一种基于任务特征融合的非侵入式负荷监测功率分解方法

    公开(公告)号:CN117498543A

    公开(公告)日:2024-02-02

    申请号:CN202311406235.6

    申请日:2023-10-27

    Abstract: 本发明公开了一种基于任务特征融合的非侵入式负荷监测功率分解方法,将每个家电的功率分解视为一个子任务,构建基于多任务学习的多家电功率分解模型。设计的模型包括一个共性特征矩阵提取分支和多个个性任务提取分支,分别提取所有家电都需要的共性特征矩阵和个别家电需要的个性特征矩阵,然后将每个家电的个性特征矩阵和共性特征矩阵融合在一起用于每个子任务的功率分解。通过特征融合的方式不仅可以将各个子任务关联起来,并且丰富了家电功率分解特征。本发明增强了功率分解模型的泛化能力,减少了需要多次训练模型的训练时间和训练参数,提高了家电功率分解的准确性。

    一种基于任务特征融合的非侵入式负荷监测功率分解方法

    公开(公告)号:CN117498543B

    公开(公告)日:2024-06-07

    申请号:CN202311406235.6

    申请日:2023-10-27

    Abstract: 本发明公开了一种基于任务特征融合的非侵入式负荷监测功率分解方法,将每个家电的功率分解视为一个子任务,构建基于多任务学习的多家电功率分解模型。设计的模型包括一个共性特征矩阵提取分支和多个个性任务提取分支,分别提取所有家电都需要的共性特征矩阵和个别家电需要的个性特征矩阵,然后将每个家电的个性特征矩阵和共性特征矩阵融合在一起用于每个子任务的功率分解。通过特征融合的方式不仅可以将各个子任务关联起来,并且丰富了家电功率分解特征。本发明增强了功率分解模型的泛化能力,减少了需要多次训练模型的训练时间和训练参数,提高了家电功率分解的准确性。

    一种基于边缘信息引导的上下文聚合图像去雨方法

    公开(公告)号:CN114677306A

    公开(公告)日:2022-06-28

    申请号:CN202210319123.6

    申请日:2022-03-29

    Abstract: 本发明公开了一种基于边缘信息引导的上下文聚合图像去雨方法,旨在解决现阶段去雨方法忽略图像本身的纹理信息以及边缘信息的问题,其新颖之处在于设计了一个多尺度信息网络,其中包括了用于获取粗调图像去雨信息的上分支图像去雨网络和用于获取图像边缘信息的下分支边缘信息检测网络,且包括了上下文聚合模块,此模块用于聚合处理上下文信息,并利用聚合处理后的信息对粗调图像去雨信息进行引导,增强上分支图像去雨网络对图像细节信息的表征能力。实验结果表明该方法在完成图像去雨的同时使图像获得更加丰富的纹理信息和边缘信息。

    一种基于特征解耦网络的静脉识别方法

    公开(公告)号:CN115457611A

    公开(公告)日:2022-12-09

    申请号:CN202211293367.8

    申请日:2022-10-21

    Abstract: 本发明公开了一种基于特征解耦网络的静脉识别方法,设计高鲁棒性静脉图像分割模型,获取高质量的静脉形状特征二值分割图,构建基于多尺度注意力残差模块的静脉形状纹理特征解耦网络,实现静脉图像纹理和形状特征的自适应解耦,提出权值引导的高判别深度特征学习模块,增强了静脉深度特征表示能力。本发明减少了纹理信息中光照信息对于静脉深度特征表示能力的影响,增强了静脉纹理特征和形状特征的融合效果,提高了静脉识别方法的性能。

Patent Agency Ranking