基于双路图U-NET卷积网络的溢油高光谱图像检测方法

    公开(公告)号:CN113052216A

    公开(公告)日:2021-06-29

    申请号:CN202110276544.0

    申请日:2021-03-15

    Abstract: 本发明公开了一种基于双路图U‑NET卷积网络的溢油高光谱图像检测方法,包括以下步骤:步骤1、对需要检测溢油的高光谱图像的数据进行图结构化,得到光谱图结构信息和空间图结构信息;步骤2、将所述光谱图结构信息和空间图结构信息分别送入双路图U‑NET卷积网络中的一路,分别得到所述高光谱图像的光谱图特征和空间图特征;步骤3、对所述光谱图特征和所述空间图特征进行融合,得到空‑谱图特征;步骤4、将所述空‑谱图特征送入分类器,以得到所述高光谱图像的分类结果。本发明能够将欧式图像数据映射为非欧数据,更有效地表示光谱信息和空间信息,进一步提取到溢油高光谱图像的空‑谱图特征,提高了溢油高光谱图像的检测准确率。

    基于双路图U-NET卷积网络的溢油高光谱图像检测方法

    公开(公告)号:CN113052216B

    公开(公告)日:2022-04-22

    申请号:CN202110276544.0

    申请日:2021-03-15

    Abstract: 本发明公开了一种基于双路图U‑NET卷积网络的溢油高光谱图像检测方法,包括以下步骤:步骤1、对需要检测溢油的高光谱图像的数据进行图结构化,得到光谱图结构信息和空间图结构信息;步骤2、将所述光谱图结构信息和空间图结构信息分别送入双路图U‑NET卷积网络中的一路,分别得到所述高光谱图像的光谱图特征和空间图特征;步骤3、对所述光谱图特征和所述空间图特征进行融合,得到空‑谱图特征;步骤4、将所述空‑谱图特征送入分类器,以得到所述高光谱图像的分类结果。本发明能够将欧式图像数据映射为非欧数据,更有效地表示光谱信息和空间信息,进一步提取到溢油高光谱图像的空‑谱图特征,提高了溢油高光谱图像的检测准确率。

Patent Agency Ranking