-
公开(公告)号:CN115189949B
公开(公告)日:2023-06-16
申请号:CN202210814018.X
申请日:2022-07-11
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
Abstract: 本发明公开了一种基于全局信息的网络安全控制关键节点识别方法,该方法包括:获取指挥控制网络关键节点数据集;构建指挥控制网络关键节点识别模型,包括静态背景关键节点识别模型和攻击背景关键节点识别模型;对指挥控制网络进行状态检测,如果检测到网络攻击或者网络拓扑变化,指挥控制网络处于攻击背景,否则为静态背景;在静态背景下,利用静态背景关键节点识别模型,对指挥控制网络关键节点数据集进行处理,得到第一关键节点识别结果;在攻击背景下,利用攻击背景关键节点识别模型,对指挥控制网络关键节点数据集进行处理,得到第二关键节点识别结果。本发明在静态背景和动态攻击背景下,实现了高准确性低复杂度的指挥控制网络关键节点识别。
-
公开(公告)号:CN115455258B
公开(公告)日:2023-04-18
申请号:CN202211118012.5
申请日:2022-09-14
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
IPC: G06F16/906 , G06F16/901 , G06F18/241 , G06F18/2415 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08 , H04L9/40 , H04L47/2441 , H04L41/14 , H04L41/16
Abstract: 本发明公开了一种网络空间语言描述与分析方法及装置。所述方法包括:将原始流量数据处理为网络流和字节数据,将其构建为异构图,提取异构图的邻接矩阵、度矩阵以及特征矩阵,经卷积码模型处理后,得到全局嵌入数据,利用编码器对全局嵌入数据进行编码,得到网络流量数据的特征信息,并基于此进行分类,得到网络流分类结果信息。本发明可用于网络空间作战场景中,解决由于多变场景带来的方法适用性差、自动化程度低的问题。
-
公开(公告)号:CN115225373B
公开(公告)日:2023-04-07
申请号:CN202210844980.8
申请日:2022-07-18
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
IPC: H04L9/40
Abstract: 本发明公开了一种信息不完备条件下的网络空间安全态势表达方法及装置,该方法包括:从网络节点采集四模态缺省流量数据向量,利用深度多模态编码器,进行数据融合,得到联合特征向量集;对每个网络节点的联合特征向量进行处理,得到态势影响因子信息,进而得到网络节点的安全态势值;利用预设的网络整体安全态势模型,计算得到网络整体安全态势值;利用关联规则挖掘算法模型,得到网络漏洞预测信息。本发明通过深度多模态编码器,解决了信息不完备条件下部分流量特征数据缺省的问题,提高了态势计算及表达的效率,通过关联规则挖掘算法更好地识别未知漏洞,提高态势预测的准确度。
-
公开(公告)号:CN115455408B
公开(公告)日:2023-04-07
申请号:CN202211117994.6
申请日:2022-09-14
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
IPC: G06F21/55 , G06V10/764 , G06V10/82 , G06N3/08 , G06N3/0464 , G06N3/048 , H04L9/40
Abstract: 本发明公开了一种网络空间推演与安全评估方法及装置,该方法通过将网络流处理为网络流图像,把传统网络流分类重新表述为图像分类;通过将具有注意力机制的卷积神经网络应用于此图像分类,增强了模型决策的视觉解释性;通过采用多任务分支网络模型同时预测网络流的二分类输出和多分类输出,利用学习到的特征,二分类可检测良性流或攻击流,多分类可预测具体的网络流入侵类别,提高了多分类任务的性能,解决分类不平衡、准确性较差问题。可见,通过结合注意力机制和多任务学习策略,在提升网络入侵检测性能的同时,实现了神经网络分类的透明性和解释性。
-
公开(公告)号:CN115455408A
公开(公告)日:2022-12-09
申请号:CN202211117994.6
申请日:2022-09-14
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
Abstract: 本发明公开了一种网络空间推演与安全评估方法及装置,该方法通过将网络流处理为网络流图像,把传统网络流分类重新表述为图像分类;通过将具有注意力机制的卷积神经网络应用于此图像分类,增强了模型决策的视觉解释性;通过采用多任务分支网络模型同时预测网络流的二分类输出和多分类输出,利用学习到的特征,二分类可检测良性流或攻击流,多分类可预测具体的网络流入侵类别,提高了多分类任务的性能,解决分类不平衡、准确性较差问题。可见,通过结合注意力机制和多任务学习策略,在提升网络入侵检测性能的同时,实现了神经网络分类的透明性和解释性。
-
公开(公告)号:CN115189949A
公开(公告)日:2022-10-14
申请号:CN202210814018.X
申请日:2022-07-11
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
Abstract: 本发明公开了一种基于全局信息的网络安全控制关键节点识别方法,该方法包括:获取指挥控制网络关键节点数据集;构建指挥控制网络关键节点识别模型,包括静态背景关键节点识别模型和攻击背景关键节点识别模型;对指挥控制网络进行状态检测,如果检测到网络攻击或者网络拓扑变化,指挥控制网络处于攻击背景,否则为静态背景;在静态背景下,利用静态背景关键节点识别模型,对指挥控制网络关键节点数据集进行处理,得到第一关键节点识别结果;在攻击背景下,利用攻击背景关键节点识别模型,对指挥控制网络关键节点数据集进行处理,得到第二关键节点识别结果。本发明在静态背景和动态攻击背景下,实现了高准确性低复杂度的指挥控制网络关键节点识别。
-
公开(公告)号:CN115695027A
公开(公告)日:2023-02-03
申请号:CN202211379520.9
申请日:2022-11-04
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
Abstract: 本发明公开了一种原始网络流威胁检测方法与装置,该方法包括:获取原始网络流数据,利用原始网络流数据表征模型,对原始网络流数据进行处理,得到原始网络流数据的特征信息;划分原始网络流数据的特征信息,得到原始网络流数据的训练特征信息和原始网络流数据的测试特征信息;利用自动机器学习模型,对原始网络流数据的训练特征信息进行处理,得到优化原始网络流威胁检测模型;利用优化原始网络流威胁检测模型,对原始网络流数据的测试特征信息进行处理,得到原始网络流威胁检测结果。可见,本发明方法解决了由于复杂多变场景带来的方法适用性差、自动化程度低等难点问题,有效提高了网络空间作战场景下的威胁检测分析模型的自动构建水平。
-
公开(公告)号:CN115225373A
公开(公告)日:2022-10-21
申请号:CN202210844980.8
申请日:2022-07-18
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
IPC: H04L9/40
Abstract: 本发明公开了一种信息不完备条件下的网络空间安全态势表达方法及装置,该方法包括:从网络节点采集四模态缺省流量数据向量,利用深度多模态编码器,进行数据融合,得到联合特征向量集;对每个网络节点的联合特征向量进行处理,得到态势影响因子信息,进而得到网络节点的安全态势值;利用预设的网络整体安全态势模型,计算得到网络整体安全态势值;利用关联规则挖掘算法模型,得到网络漏洞预测信息。本发明通过深度多模态编码器,解决了信息不完备条件下部分流量特征数据缺省的问题,提高了态势计算及表达的效率,通过关联规则挖掘算法更好地识别未知漏洞,提高态势预测的准确度。
-
公开(公告)号:CN115455258A
公开(公告)日:2022-12-09
申请号:CN202211118012.5
申请日:2022-09-14
Applicant: 中国电子科技集团公司第十五研究所 , 北京邮电大学
IPC: G06F16/906 , G06F16/901 , G06K9/62 , G06N3/04 , G06N3/08 , H04L9/40 , H04L47/2441 , H04L41/14 , H04L41/16
Abstract: 本发明公开了一种网络空间语言描述与分析方法及装置。所述方法包括:将原始流量数据处理为网络流和字节数据,将其构建为异构图,提取异构图的邻接矩阵、度矩阵以及特征矩阵,经卷积码模型处理后,得到全局嵌入数据,利用编码器对全局嵌入数据进行编码,得到网络流量数据的特征信息,并基于此进行分类,得到网络流分类结果信息。本发明可用于网络空间作战场景中,解决由于多变场景带来的方法适用性差、自动化程度低的问题。
-
公开(公告)号:CN118540263B
公开(公告)日:2024-11-26
申请号:CN202410550620.6
申请日:2024-05-06
Applicant: 中国电子科技集团公司第十五研究所
IPC: H04L45/021 , H04L45/02 , H04L41/147 , H04L41/16 , G06N3/042 , G06N3/0442 , G06N3/0455 , G06N3/0464
Abstract: 本发明公开了一种网络节点间的链路预测方法和装置,所述方法包括:获取网络拓扑信息集合;所述网络拓扑信息集合,用于表征网络的连通性;所述网络,包括若干个节点和节点之间的链路;对所述网络拓扑信息集合进行连接识别处理,得到第一链接结果信息集合和更新的网络拓扑信息集合;对所述第一链接结果信息集合和更新的网络拓扑信息集合进行比较判断操作,得到网络未预测边信息集合;所述网络未预测边信息集合,包括网络未预测边信息;利用训练完毕的节点连接预测模型,对所述网络未预测边信息集合进行处理,得到网络节点间的链路预测结果;所述网络节点间的链路预测结果,用于表征网络节点间的链路是否连通。
-
-
-
-
-
-
-
-
-