-
公开(公告)号:CN117829320B
公开(公告)日:2024-06-25
申请号:CN202410244640.0
申请日:2024-03-05
Applicant: 中国海洋大学
IPC: G06N20/00 , G06N3/0464 , G06N3/08
Abstract: 本发明属于图像处理技术领域,公开了一种基于图神经网络和双向深度知识蒸馏的联邦学习方法,包括以下步骤:服务器端初始化一个全局模型,并将初始权重分发给所有客户端;客户端接收服务器下发的全局模型,并使用基于注意力机制的视觉图神经网络进行本地训练;客户端获取其本地模型的中间层表示和最终输出,并接收服务器在前一轮模型更新中的中间层表示和最终输出,计算出客户端的知识蒸馏损失,进而计算客户端的总损失;更新客户端本地模型梯度并发送到服务器;服务器端接收各客户端模型上传的本地模型更新和蒸馏损失,计算平均梯度和平均蒸馏损失;最后服务器端计算总损失并更新全局模型。通过本发明实现客户端和服务器之间知识共享。
-
公开(公告)号:CN117829320A
公开(公告)日:2024-04-05
申请号:CN202410244640.0
申请日:2024-03-05
Applicant: 中国海洋大学
IPC: G06N20/00 , G06N3/0464 , G06N3/08
Abstract: 本发明属于图像处理技术领域,公开了一种基于图神经网络和双向深度知识蒸馏的联邦学习方法,包括以下步骤:服务器端初始化一个全局模型,并将初始权重分发给所有客户端;客户端接收服务器下发的全局模型,并使用基于注意力机制的视觉图神经网络进行本地训练;客户端获取其本地模型的中间层表示和最终输出,并接收服务器在前一轮模型更新中的中间层表示和最终输出,计算出客户端的知识蒸馏损失,进而计算客户端的总损失;更新客户端本地模型梯度并发送到服务器;服务器端接收各客户端模型上传的本地模型更新和蒸馏损失,计算平均梯度和平均蒸馏损失;最后服务器端计算总损失并更新全局模型。通过本发明实现客户端和服务器之间知识共享。
-