-
公开(公告)号:CN115945684B
公开(公告)日:2024-09-03
申请号:CN202211536996.9
申请日:2022-12-02
Applicant: 中国核动力研究设计院 , 成都邦普切削刀具股份有限公司
Abstract: 本发明公开了一种钨合金空心球及其制备方法和应用,钨合金空心球的制备方法包括将一定配比的钨粉、镍粉、铁粉混合制成钨合金粉;将蜡基、醇基、联合剂与溶剂混合配制成能雾化的球形化粘接剂;在翻转滚动的模板小球表面交替喷上雾化的球形化粘接剂和撒上钨合金粉,制得钨合金空心球毛坯;将钨合金空心球毛坯进行脱脂和烧结,并经滚磨得到钨合金空心球。钨合金空心球的成品率大幅提高,达到80%‑85%。由钨合金空心球制成的树脂粘接板具有更优异的γ射线质量衰减性能,可以实现通常笨重屏蔽体的轻量化。钨合金空心球在辐射屏蔽、装甲防护、吸能减震等领域有着广泛的应用前景。
-
公开(公告)号:CN115945684A
公开(公告)日:2023-04-11
申请号:CN202211536996.9
申请日:2022-12-02
Applicant: 中国核动力研究设计院 , 成都邦普切削刀具股份有限公司
Abstract: 本发明公开了一种钨合金空心球及其制备方法和应用,钨合金空心球的制备方法包括将一定配比的钨粉、镍粉、铁粉混合制成钨合金粉;将蜡基、醇基、联合剂与溶剂混合配制成能雾化的球形化粘接剂;在翻转滚动的模板小球表面交替喷上雾化的球形化粘接剂和撒上钨合金粉,制得钨合金空心球毛坯;将钨合金空心球毛坯进行脱脂和烧结,并经滚磨得到钨合金空心球。钨合金空心球的成品率大幅提高,达到80%‑85%。由钨合金空心球制成的树脂粘接板具有更优异的γ射线质量衰减性能,可以实现通常笨重屏蔽体的轻量化。钨合金空心球在辐射屏蔽、装甲防护、吸能减震等领域有着广泛的应用前景。
-
公开(公告)号:CN115722664A
公开(公告)日:2023-03-03
申请号:CN202211536403.9
申请日:2022-12-02
Applicant: 中国核动力研究设计院 , 成都邦普切削刀具股份有限公司
Abstract: 本发明公开了一种均匀骨架结构复合材料,由若干均匀骨架的钨合金空心球与有机物或金属粉混合后通过热成型工艺制得,其中,钨合金空心球的相对密度不大于50%,所述有机物可以是聚乙烯、环氧树脂、聚酰亚胺中的任何一种,而金属材质可以是铝合金、不锈钢或者钨合金。本发明提供的一系列均匀骨架结构复合材料均含有高密度γ射线屏蔽性能优异的钨合金制成的相对低密度的空心球,使得相应的复合材料的具有优异的质量衰减性能,对于现用屏蔽材料,比如铅硼聚乙烯、硼钢(或硼不锈钢)、钨合金等重要屏蔽材料的轻量化提供了一个有益的思路,值得推广应用。
-
公开(公告)号:CN115547526A
公开(公告)日:2022-12-30
申请号:CN202211345201.6
申请日:2022-10-31
Applicant: 中国核动力研究设计院
IPC: G21C17/104 , G21G4/02
Abstract: 本发明公开了一种适用于大型核动力堆的Am‑Be中子源组件及堆芯,该中子源组件包括星形架及若干挂设在星形架上的中子源棒;中子源棒内装载有Am‑Be材料,为堆芯物理启动提供中子源;中子源棒的数目取决于压力容器下降段水隙厚度造成的衰减。中子源棒包括中子源棒包壳、压紧管和Am‑Be材料芯块,中子源棒包壳内设置有Am‑Be材料芯块。中子源棒还包括Sb‑Be材料芯块,Am‑Be材料芯块与Sb‑Be材料芯块沿中子源棒包壳的轴向交替布置。本发明节省Cf‑252源的高额采购费用,避免短半衰期中子源可能带来的,电厂因为各种意外进行长时间停堆造成无中子源可用的问题;不再使用单独的堆芯二次中子源。
-
公开(公告)号:CN111933322B
公开(公告)日:2022-11-22
申请号:CN202010812110.3
申请日:2020-08-13
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种耐高温中子屏蔽组件,包括包壳、以及填充在包壳内的屏蔽材料;所述屏蔽材料的原料包括无机非金属凝胶材料和碳化硼,所述碳化硼的质量百分含量为60%‑90%;所述屏蔽材料的密度为1.8g/cm3‑2.4g/cm3,通过浇注工艺制备。本发明屏蔽组件由不锈钢包壳与填充在不锈钢包壳中的屏蔽材料构成,屏蔽材料为一整块,无拼接缝,该屏蔽组件应用于核反应堆压力容器外侧或主管道外侧,保温层内侧,可使用温度高于300℃,生产成本不到碳化硼陶瓷块的30%,且没有拼接缝,具有比碳化硼陶瓷块屏蔽组件更好的屏蔽效果,可代替碳化硼陶瓷块应用于三代反应堆保温层屏蔽组件中。
-
公开(公告)号:CN112260766B
公开(公告)日:2022-01-18
申请号:CN202011119522.5
申请日:2020-10-19
Applicant: 中国核动力研究设计院
IPC: H04B10/90 , H04B10/516
Abstract: 本发明公开了一种射线偏转通信系统及通信方法,包括沿信号传输方向依次设置的信息源、调制电路、射线发生装置、多个射线探测器和解调电路,射线发生装置包括射线源和偏转装置,射线源放射出具有强穿透性的射线;信息信号由模拟信号转化为初始电信号;根据初始电信号,控制偏转装置在不同物理位置的切换,使得射线源放射出的射线的传输方向发生偏转,形成多个方向的偏转射线,形成射线信号;射线探测器位于偏转射线的传输方向上,接收射线信号,并转化为输出电信号接收输出电信号,并解调为信息信号。本发明结构简单,提高了通信的安全性和经济性,增加加载码元的数量,提高了通信速率,实现电磁屏蔽环境下的通信。
-
公开(公告)号:CN110556191B
公开(公告)日:2021-09-21
申请号:CN201811082884.4
申请日:2018-09-17
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种浮动式核电站舱室的二次屏蔽结构,包括放置反应堆的第一舱室和工作人员所待的第二舱室,第一舱室和第二舱室并排设置,第一舱室和第二舱室之间并排设置有缓冲舱室,第一舱室和缓冲舱室之间的阻隔墙为内层屏蔽墙体,内层屏蔽墙体靠近缓冲舱室的一侧墙面上设置有第一屏蔽层,缓冲舱室和第二舱室之间的阻隔墙为外层屏蔽墙体,外层屏蔽墙体靠近缓冲舱室的一侧墙面上设置有第二屏蔽层,外层屏蔽墙体靠近第二舱室的一侧墙面上设置有第三屏蔽层,第一屏蔽层为γ射线屏蔽材料层,第二屏蔽层为中子屏蔽材料层,第三屏蔽层为次生γ射线屏蔽材料层。本发明能够有效分担核电站舱室壁面承受的屏蔽材料重量和提升射线的屏蔽能力。
-
公开(公告)号:CN112260767A
公开(公告)日:2021-01-22
申请号:CN202011119527.8
申请日:2020-10-19
Applicant: 中国核动力研究设计院
IPC: H04B10/90 , H04B10/516
Abstract: 本发明公开了一种红外线‑γ射线组合无线通信系统及通信方法,包括沿信号传输方向依次设置的信息源、模数转换器、信号调制器、红外发射管、转换装置、红外接收管和信号解调器;将原始信息信号转换为初始电信号;将初始电信号转换为数字信号;控制红外发射管辐射的红外线,将数字信号加载到红外线中,形成红外线信号;将红外线信号转换为γ射线信号;将γ射线信号转换为红外线信号;接收红外线信号,并将红外信号转换为输出电信号;接收输出电信号并解调后输出。本发明充分地结合γ射线通信和红外线通信方式的各自优势,由γ射线通信弥补红外线穿透能力不足、在电磁屏蔽环境下无法正常通信等问题,拓展了红外线和γ射线通信技术的应用范围。
-
公开(公告)号:CN112260752A
公开(公告)日:2021-01-22
申请号:CN202011118234.8
申请日:2020-10-19
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种γ射线强度调制通信系统及方法,包括沿信号传输方向依次设置的信息源、控制单元、屏蔽体、γ射线强度探测器和解调电路,通信系统还包括γ源,屏蔽体包括多个屏蔽强度区域;信息源用于将信息信号由模拟信号转化为初始电信号;控制单元用于根据初始电信号,驱动屏蔽体运动,使得多个屏蔽强度区域之间相互切换;当屏蔽体运动时,γ源放射出的γ射线穿过不同的屏蔽强度区域,使得穿过屏蔽体的γ射线具有多种强度,形成γ射线信号;根据γ射线信号的强度信息,将γ射线信号转化为输出电信号;将输出电信号解调为信息信号。本发明实现了利用γ射线的强度参数对γ射线进行调制并完成通信过程。
-
公开(公告)号:CN111791478A
公开(公告)日:2020-10-20
申请号:CN202010685373.2
申请日:2020-07-16
Applicant: 中国核动力研究设计院
IPC: B29C64/106 , B29C64/314 , B29C64/379 , B33Y10/00 , B33Y40/10 , B33Y40/20 , C08L61/16 , C08K3/38 , C08K3/08 , C08L77/00
Abstract: 本发明公开一种耐高温屏蔽材料的3D打印工艺,所述屏蔽材料为内层芯体包覆在外层材料内部的呈夹心结构的屏蔽体,工艺包括如下步骤:1)原材料预处理:将原材料干燥处理;2)丝材制备:共混挤出制备丝材,挤出温度为320℃-380℃;3)熔融沉积打印:丝材采用熔融沉积工艺进行3D打印成型,丝材打印温度为380℃-430℃,打印速度为35m/s-45m/s;打印喷嘴直径为0.3mm-0.5mm,打印工作台温度为70℃-90℃;4)热处理:打印后在温度200℃-350℃环境下,热处理2h-3h。本发明的3D打印工艺,能够实现传统挤出、注塑等高分子材料成型工艺无法实现的夹心体结构的成型,可以制备出均匀性、力学性能、热性能优异的屏蔽材料。
-
-
-
-
-
-
-
-
-