一种构建含竞争指标的广义可加混合树高模型的方法

    公开(公告)号:CN117708468B

    公开(公告)日:2024-09-17

    申请号:CN202410019674.X

    申请日:2024-01-05

    Abstract: 一种构建含竞争指标的广义可加混合树高模型的方法,具体步骤如下:一:数据整理,包括不同样地数据合并,异常值剔除,以林木分级作为分类变量,计算Hegyi竞争指数与BAL指数;二:数据集划分,按照比例随机划分建模数据集和验证数据集;三:构建广义可加性混合模型;四:模型评价,模型评价指标包括决定系数、相对均方根误差和赤池信息量。本发明所有广义可加混合模型在模型估计精度上均优于非线性混合模型,R2平均提高0.005,RMSE%,AIC值以及Bias分别平均降低0.5%,59.88以及12~13个数量级。在广义可加混合树高模型中,以BAL为辅助变量,考虑唯一全局平滑函数并在具有相同扭曲程度的分组水平平滑函数添加随机效应能够获得相对最优的模型估计精度及预测能力。

    含竞争指标的广义可加混合树高模型

    公开(公告)号:CN117708468A

    公开(公告)日:2024-03-15

    申请号:CN202410019674.X

    申请日:2024-01-05

    Abstract: 一种含竞争指标的广义可加混合树高模型,具体步骤如下:一:数据整理,包括不同样地数据合并,异常值剔除,分类变量林木分级无顺序因子化,计算Hegyi指数与BAL指数;二:数据集划分,按照比例随机划分建模数据集和验证数据集;三:构建广义可加性混合模型;四:模型评价,模型评价指标包括决定系数、相对均方根误差和赤池信息量。本发明所有广义可加混合模型在模型估计精度上均优于非线性混合模型,R2平均提高0.005,RMSE%,AIC值以及Bias分别平均降低0.5%,59.88以及12~13个数量级。在广义可加混合树高模型中,以BAL为辅助变量,考虑唯一全局平滑函数并在具有相同扭曲程度的分组水平平滑函数添加随机效应能够获得相对最优的模型估计精度及预测能力。

    杉木全周期冠幅模型研建方法
    10.
    发明公开

    公开(公告)号:CN120032722A

    公开(公告)日:2025-05-23

    申请号:CN202510114334.X

    申请日:2025-01-24

    Abstract: 本发明提供杉木全周期冠幅模型研建方法,属于模型构建领域,本申请构建了单木全生长周期冠幅预测模型。系统分析了冠幅生长的动态特征及其多尺度影响机制。以胸径和树高为核心变量的基础模型较好地反映了树木生长规律,龄组哑变量有效捕捉了冠幅在不同生长阶段的动态变化特征,而混合效应模型的引入显著提升了模型的精度与适用性(R2=0.717,RMSE=0.502),量化了区组和样地效应对冠幅生长的宏观与微观影响。表明环境异质性和随机效应的综合考虑是全生长周期建模的关键,为森林资源的可持续管理和生态系统动态监测提供了重要科学依据。本发明方法和框架适用于其他树种或生态系统,为优化冠幅预测、揭示环境因子作用及提升碳汇评估精度提供了新思路。

Patent Agency Ranking