一种基于变频微波的生物质炭还原CO2制备CO的方法

    公开(公告)号:CN116143119B

    公开(公告)日:2024-10-15

    申请号:CN202310088943.3

    申请日:2023-01-17

    Abstract: 本发明公开了一种基于变频微波的生物质炭还原CO2制备CO的方法,属于CO2还原技术领域。该方法以生物质炭为吸波剂和还原剂,在微波反应器中实现CO2被C还原制备CO;微波频率3550‑7100MHz连续可调、功率为200‑400W,空速为88~528h‑1。通过改变微波频率以匹配不同生物质炭的最佳吸收频率,在共振作用及热点效应影响下有效促进反应进行。本发明基于微波频率连续可调的特点,可以使生物质炭在480‑900℃还原CO2,并得到相对纯净的CO,解决了现有技术中CO2转化率低和贵金属催化剂需求高的问题。

    一种变频微波催化甲烷裂解制氢的方法

    公开(公告)号:CN116253288A

    公开(公告)日:2023-06-13

    申请号:CN202310074463.1

    申请日:2023-01-17

    Abstract: 本发明公开了一种变频微波催化甲烷裂解制氢的方法,属于甲烷裂解制氢技术领域。该以甲烷为反应气,氮气为载气,气体自上而下通过填充有催化剂的石英管,催化剂为生物质基活性炭、稻壳炭、竹屑炭、Co3O4或Fe2O3中的任一种;微波频率为2450‑7100MHz,功率为125‑500W,反应温度为450‑1010℃。该方法通过调节微波频率使其与催化剂共振降低甲烷裂解活化能,降低反应温度,提高甲烷转化率并保持较好的催化剂稳定性。对反应失活后的催化剂,改变微波发射频率使其重新吸波,迅速升温促进甲烷裂解,延长催化剂使用寿命;解决了现有微波条件下甲烷裂解转化率低和催化剂重新利用困难的问题。

    一种基于变频微波的生物质炭还原CO2制备CO的方法

    公开(公告)号:CN116143119A

    公开(公告)日:2023-05-23

    申请号:CN202310088943.3

    申请日:2023-01-17

    Abstract: 本发明公开了一种基于变频微波的生物质炭还原CO2制备CO的方法,属于CO2还原技术领域。该方法以生物质炭为吸波剂和还原剂,在微波反应器中实现CO2被C还原制备CO;微波频率3550‑7100MHz连续可调、功率为200‑400W,空速为88~528h‑1。通过改变微波频率以匹配不同生物质炭的最佳吸收频率,在共振作用及热点效应影响下有效促进反应进行。本发明基于微波频率连续可调的特点,可以使生物质炭在480‑900℃还原CO2,并得到相对纯净的CO,解决了现有技术中CO2转化率低和贵金属催化剂需求高的问题。

    一种变频微波串联催化水制氢的方法

    公开(公告)号:CN116239080A

    公开(公告)日:2023-06-09

    申请号:CN202310066940.X

    申请日:2023-01-17

    Abstract: 本发明公开了一种变频微波串联催化水制氢的方法,属于水制氢技术领域。该方法以生物质炭串联金属氧化物为催化剂,水为反应物,水经预热炉气化后通入微波反应器,水蒸气自上而下通过串联催化床层,在上层生物质炭作用下发生水煤气反应,在下层金属氧化物催化下发生水煤气变换反应。通过改变微波频率以匹配生物质炭的最佳吸收频率,在共振作用及热点效应影响下有效降低反应活化能,使水煤气反应在520℃发生,频率为4225MHz时串联催化体系中上层椰壳炭较好吸收微波达到裂解温度,下层金属氧化物层在此频率下温度较低,利于水煤气变换反应正向进行从而实现CO原位转化,减少分离难度。

    一种变频微波串联催化水制氢的方法

    公开(公告)号:CN116239080B

    公开(公告)日:2024-10-15

    申请号:CN202310066940.X

    申请日:2023-01-17

    Abstract: 本发明公开了一种变频微波串联催化水制氢的方法,属于水制氢技术领域。该方法以生物质炭串联金属氧化物为催化剂,水为反应物,水经预热炉气化后通入微波反应器,水蒸气自上而下通过串联催化床层,在上层生物质炭作用下发生水煤气反应,在下层金属氧化物催化下发生水煤气变换反应。通过改变微波频率以匹配生物质炭的最佳吸收频率,在共振作用及热点效应影响下有效降低反应活化能,使水煤气反应在520℃发生,频率为4225MHz时串联催化体系中上层椰壳炭较好吸收微波达到裂解温度,下层金属氧化物层在此频率下温度较低,利于水煤气变换反应正向进行从而实现CO原位转化,减少分离难度。

    一种变频微波催化甲烷裂解制氢的方法

    公开(公告)号:CN116253288B

    公开(公告)日:2024-10-08

    申请号:CN202310074463.1

    申请日:2023-01-17

    Abstract: 本发明公开了一种变频微波催化甲烷裂解制氢的方法,属于甲烷裂解制氢技术领域。该以甲烷为反应气,氮气为载气,气体自上而下通过填充有催化剂的石英管,催化剂为生物质基活性炭、稻壳炭、竹屑炭、Co3O4或Fe2O3中的任一种;微波频率为2450‑7100MHz,功率为125‑500W,反应温度为450‑1010℃。该方法通过调节微波频率使其与催化剂共振降低甲烷裂解活化能,降低反应温度,提高甲烷转化率并保持较好的催化剂稳定性。对反应失活后的催化剂,改变微波发射频率使其重新吸波,迅速升温促进甲烷裂解,延长催化剂使用寿命;解决了现有微波条件下甲烷裂解转化率低和催化剂重新利用困难的问题。

    一种变频微波定向调控水煤气反应高效制合成气的方法

    公开(公告)号:CN116218567A

    公开(公告)日:2023-06-06

    申请号:CN202310067044.5

    申请日:2023-01-17

    Abstract: 本发明公开了一种变频微波定向调控水煤气反应高效制合成气的方法,属于水煤气反应制合成气技术领域。该方法以生物质炭为吸波剂和反应物、水经预热炉气化后通入微波反应器,水蒸气自上而下通过炭床层发生水煤气反应生成合成气;微波频率为3550‑7500MHz。该方法以生物质炭为吸波剂和反应物,所得合成气体积分数高于99%,氢碳摩尔比的比值为1.1。通过改变微波发射频率以匹配不同生物质炭的本征频率,使二者在共振作用下降低反应活化能,提高反应速率;解决了水煤气反应制合成气在常规微波频率下难以发生和电加热条件下产气速率低及合成气组分复杂、分离困难的问题。

    一种锂/钠离子电池负极碳材料及其制备方法

    公开(公告)号:CN117658100A

    公开(公告)日:2024-03-08

    申请号:CN202311505299.1

    申请日:2023-11-13

    Abstract: 本发明公开了一种锂/钠离子电池负极碳材料及其制备方法,属于电池电极材料技术领域。该方法以水溶性生物质原料为碳源,硼酸和含氮类水溶化合物作为硼源和氮源,通过快速水浴蒸发诱导的自组装和高温炭化制得具有吡啶N‑B和纳米夹心结构的碳材料,作为锂/钠离子电容器电极材料具有优异的电化学储能性能。本发明原料易得、成本低、无污染,制备过程简单可控、环境友好适用性强,制得的碳材料作为锂/钠离子电容器的电极材料具有比电容量大、倍率性能优异,稳定性好的特点,对电池电极用碳材料的设计与制备具有借鉴意义。

    一种超级电容器用改性活性炭及其制备方法

    公开(公告)号:CN111977653B

    公开(公告)日:2023-06-02

    申请号:CN202010867241.1

    申请日:2020-08-24

    Abstract: 本发明公开了一种超级电容器用改性活性炭及其制备方法,属于活性炭材料生产改性及应用技术领域。该方法先通过金属盐高温催化在活性炭外表构筑石墨化外壳,再通过氧化改性使活性炭孔道掺氧,得到电子电导率和离子电导率同步提高的改性活性炭材料。本发明解决了活性炭电极材料电子电导率和离子电导率互为消长的技术难题,首次实现了两者的同步提升。本发明制备方法操作简单,可应用于同时对电子和离子电导率有要求的活性炭材料改性中。本发明改性活性炭用于超级电容器时的倍率性能、比电容量均有大幅提高,组装成超级电容器后,具有优异的循环稳定性,应用前景广阔。

    一种储能活性炭及其制备方法

    公开(公告)号:CN110482546B

    公开(公告)日:2022-12-02

    申请号:CN201910752125.2

    申请日:2019-08-15

    Abstract: 一种储能活性炭及其制备方法。果壳炭化后破碎并置于回转炉中,无氧氛围下活化,通入水蒸气,保温后冷至室温,盐酸、蒸馏水依次洗涤,干燥后即得一级活化活性炭产品;一级活化活性炭产品破碎后置于回转炉中,无氧氛围下升温,通入水蒸气,保温后冷至室温,盐酸、蒸馏水依次洗涤,干燥后即得二级活化活性炭产品;二级活化活性炭产品破碎后置于回转炉中,无氧氛围升温,通入水蒸气,保温后冷至室温,盐酸、蒸馏水依次洗涤,干燥后即得三级活化活性炭产品。本发明生产过程安全环保无污染,后处理工序简单,适合工业化生产;制得产品灰分含量低、孔径分布合理、比表面积和比电容量大、倍率性能优异,各项指标性能均超过市售商品储能活性炭。

Patent Agency Ranking