一种基于状态空间和联合分布的干旱多级预测方法

    公开(公告)号:CN111860974B

    公开(公告)日:2022-11-01

    申请号:CN202010613418.5

    申请日:2020-06-30

    Abstract: 本发明提供了一种基于状态空间和联合分布的干旱多级预测方法,包括:首先提取干旱指数SPI时间序列,利用一阶状态空间模型解译干旱指数SPI时间序列的状态转移矩阵,并计算待预测时段的干旱状态概率矩阵;然后提取待预测时段前一时段的相关因子,构建每种干旱状态下的相关因子和干旱指数SPI时间序列的联合概率分布,推求相关因子给定情况下的干旱指数的条件概率模型;最后,计算待预测区域在待预测时段T的干旱指数的全状态分布;基于所述干旱指数的全状态分布,计算得到干旱指数的均值和90%概率区间。本发明的有益效果是:状态空间方法能反映干旱不确定性本质;通过多重预测和分类别引入影响因子能提高干旱预测的精度;过程考虑更加全面和精细化。

    一种基于状态空间和联合分布的干旱多级预测方法

    公开(公告)号:CN111860974A

    公开(公告)日:2020-10-30

    申请号:CN202010613418.5

    申请日:2020-06-30

    Abstract: 本发明提供了一种基于状态空间和联合分布的干旱多级预测方法,包括:首先提取干旱指数SPI时间序列,利用一阶状态空间模型解译干旱指数SPI时间序列的状态转移矩阵,并计算待预测时段的干旱状态概率矩阵;然后提取待预测时段前一时段的相关因子,构建每种干旱状态下的相关因子和干旱指数SPI时间序列的联合概率分布,推求相关因子给定情况下的干旱指数的条件概率模型;最后,计算待预测区域在待预测时段T的干旱指数的全状态分布;基于所述干旱指数的全状态分布,计算得到干旱指数的均值和90%概率区间。本发明的有益效果是:状态空间方法能反映干旱不确定性本质;通过多重预测和分类别引入影响因子能提高干旱预测的精度;过程考虑更加全面和精细化。

Patent Agency Ranking