基于跨模态融合与图神经网络的遥感影像语义分割方法

    公开(公告)号:CN116797787B

    公开(公告)日:2024-01-02

    申请号:CN202310573090.2

    申请日:2023-05-22

    Abstract: 本发明涉及图像处理技术领域,提供了一种基于跨模态融合与图神经网络的遥感影像语义分割方法,包括:获取RGB遥感图和对应的高程图;将所述RGB遥感图和所述高程图输入第一双流编码器‑解码器模块,输出第一重构特征图;将所述第一重构特征图输入图卷积神经网络模块,输出一级分类体系预测图像;将所述RGB遥感图、所述高程图以及所述一级分类体系预测图像输入构建好的语义分割网络,输出二级分类体系预测图像。本发明将一级分类体系预测图像的先验信息融入二级分类体系预测图像的预测过程中,可以引导网络关注不同类别间的差异化特征,提高分割的整体性,从而有效提升了遥感影像语义分割的精确度。

    基于跨模态融合与图神经网络的遥感影像语义分割方法

    公开(公告)号:CN116797787A

    公开(公告)日:2023-09-22

    申请号:CN202310573090.2

    申请日:2023-05-22

    Abstract: 本发明涉及图像处理技术领域,提供了一种基于跨模态融合与图神经网络的遥感影像语义分割方法,包括:获取RGB遥感图和对应的高程图;将所述RGB遥感图和所述高程图输入第一双流编码器‑解码器模块,输出第一重构特征图;将所述第一重构特征图输入图卷积神经网络模块,输出一级分类体系预测图像;将所述RGB遥感图、所述高程图以及所述一级分类体系预测图像输入构建好的语义分割网络,输出二级分类体系预测图像。本发明将一级分类体系预测图像的先验信息融入二级分类体系预测图像的预测过程中,可以引导网络关注不同类别间的差异化特征,提高分割的整体性,从而有效提升了遥感影像语义分割的精确度。

    基于多尺度和级联的神经网络遥感影像语义分割方法

    公开(公告)号:CN116645505A

    公开(公告)日:2023-08-25

    申请号:CN202310530344.2

    申请日:2023-05-12

    Abstract: 本发明涉及图像处理技术领域,提供一种基于多尺度和级联的神经网络遥感影像语义分割方法,包括:获取待处理遥感影像;将待处理遥感影像输入构建好的语义分割网络,输出语义分割结果;语义分割网络包括编码网络、特征增强模块、解码网络、语义分割模块;其中,编码网络包括卷积块和多个多尺度特征提取模块;特征增强模块包括多个信道激活模块;解码网络为多个卷积块、多个反卷积块以及多个跨层特征选择模块通过多重级联方式构成;语义分割模块包括多尺度物体引导模块和语义分割头。本发明的语义分割网络获取特征中具有代表性和区分度的特征,采用级联方式的解码网络对特征逐层解码,增强解码网络的语义理解能力,提高了遥感影像语义分割的精确度。

Patent Agency Ranking