-
公开(公告)号:CN114486850B
公开(公告)日:2023-06-16
申请号:CN202210085000.0
申请日:2022-01-25
Applicant: 中国地质大学(北京)
IPC: G01N21/65
Abstract: 本发明提供了一种Au/ND/C3N4复合材料及其制备方法和应用,涉及水生环境污染物检测技术领域。具体包括:首先借助Z204镍触媒催化剂通过一步法制备具有多孔结构的ND/C3N4杂化物,再利用柠檬酸钠去还原氯金酸和十六烷基三甲溴化铵的混合物以负载异面体金纳米粒子,即可制备得到Au/ND/C3N4复合材料。本发明制备工艺操作简单,仅两步制成,所用设备均为现有技术中常规设备,反应过程能耗低,生产过程易于控制。制备出来的复合材料具有SERS检测灵敏度高,信号重现性高,环境稳定性好,自清洁能力强的优点,尤其适合对水体中抗生素进行超痕量检测。
-
公开(公告)号:CN114717533A
公开(公告)日:2022-07-08
申请号:CN202210180780.7
申请日:2022-02-25
Applicant: 中国地质大学(北京)
Abstract: 本发明公开了一种利用仿生结构制备传感器电极保护薄膜的方法和应用,传感器电极保护薄膜为掺硼金刚石薄膜;步骤包括:电极基底处理;清洗去除电极基底表面油污;金刚石种晶处理;气相沉积薄膜:利用热丝化学气相沉积系统在电极基底表面沉积总厚度为2.8‑6μm的电极保护薄膜;真空退火;氟化处理。电极保护薄膜的成分为掺硼金刚石。本发明方法能够便捷高效进行制备生产;制得的传感器电极保护薄膜膜层均匀、覆盖完整;传感器电极保护薄膜的电极的耐腐蚀性能优于电极基体材料;该膜电极具有良好的导电性;具有极佳的疏油性能和硬度、耐腐蚀性能。仿生结构是仿造鱼鳞表面的亲水薄膜粘液和分级微‑纳结构之间的协同作用,来实现较佳的疏油性能。
-
公开(公告)号:CN114487083A
公开(公告)日:2022-05-13
申请号:CN202210065335.6
申请日:2022-01-19
Applicant: 中国地质大学(北京)
Abstract: 本发明属于磁性吸附材料技术领域,具体涉及一种磁性羟基纳米材料Fe3O4@COFs,并进一步公开其用于制备磺胺质谱检测探针的用途。本发明所述磁性羟基纳米材料Fe3O4@COFs,是以单分散Fe3O4纳米颗粒为核,以TAPB和DHTP为单体,在室温下快速合成了富含羟基的核‑壳结构磁性共价有机骨架纳米球。所述Fe3O4@COFs纳米材料具有平均孔径分布、高磁化强度、高比表面积和良好的化学稳定性、光学吸收性等优点,其丰富的羟基,可以和磺胺类抗生素分子的氨基形成氢键,COFs表面和磺胺的苯环形成π‑π共轭作用力,磁核能够实现样品的快速分离,是快速富集分离磺胺的吸附剂,同时作为基质辅助激光解析离子化质谱分析的基质,测量磺胺低分子目标物时有较低的背景干扰,能有效吸收激光的能量并促进目标物电离,使其成为一种理想的MALDI基质材料。
-
公开(公告)号:CN114717533B
公开(公告)日:2023-03-10
申请号:CN202210180780.7
申请日:2022-02-25
Applicant: 中国地质大学(北京)
Abstract: 本发明公开了一种利用仿生结构制备传感器电极保护薄膜的方法和应用,传感器电极保护薄膜为掺硼金刚石薄膜;步骤包括:电极基底处理;清洗去除电极基底表面油污;金刚石种晶处理;气相沉积薄膜:利用热丝化学气相沉积系统在电极基底表面沉积总厚度为2.8‑6μm的电极保护薄膜;真空退火;氟化处理。电极保护薄膜的成分为掺硼金刚石。本发明方法能够便捷高效进行制备生产;制得的传感器电极保护薄膜膜层均匀、覆盖完整;传感器电极保护薄膜的电极的耐腐蚀性能优于电极基体材料;该膜电极具有良好的导电性;具有极佳的疏油性能和硬度、耐腐蚀性能。仿生结构是仿造鱼鳞表面的亲水薄膜粘液和分级微‑纳结构之间的协同作用,来实现较佳的疏油性能。
-
公开(公告)号:CN114486850A
公开(公告)日:2022-05-13
申请号:CN202210085000.0
申请日:2022-01-25
Applicant: 中国地质大学(北京)
IPC: G01N21/65
Abstract: 本发明提供了一种Au/ND/C3N4复合材料及其制备方法和应用,涉及水生环境污染物检测技术领域。具体包括:首先借助Z204镍触媒催化剂通过一步法制备具有多孔结构的ND/C3N4杂化物,再利用柠檬酸钠去还原氯金酸和十六烷基三甲溴化铵的混合物以负载异面体金纳米粒子,即可制备得到Au/ND/C3N4复合材料。本发明制备工艺操作简单,仅两步制成,所用设备均为现有技术中常规设备,反应过程能耗低,生产过程易于控制。制备出来的复合材料具有SERS检测灵敏度高,信号重现性高,环境稳定性好,自清洁能力强的优点,尤其适合对水体中抗生素进行超痕量检测。
-
公开(公告)号:CN114487083B
公开(公告)日:2024-05-07
申请号:CN202210065335.6
申请日:2022-01-19
Applicant: 中国地质大学(北京)
Abstract: 本发明属于磁性吸附材料技术领域,具体涉及一种磁性羟基纳米材料Fe3O4@COFs,并进一步公开其用于制备磺胺质谱检测探针的用途。本发明所述磁性羟基纳米材料Fe3O4@COFs,是以单分散Fe3O4纳米颗粒为核,以TAPB和DHTP为单体,在室温下快速合成了富含羟基的核‑壳结构磁性共价有机骨架纳米球。所述Fe3O4@COFs纳米材料具有平均孔径分布、高磁化强度、高比表面积和良好的化学稳定性、光学吸收性等优点,其丰富的羟基,可以和磺胺类抗生素分子的氨基形成氢键,COFs表面和磺胺的苯环形成π‑π共轭作用力,磁核能够实现样品的快速分离,是快速富集分离磺胺的吸附剂,同时作为基质辅助激光解析离子化质谱分析的基质,测量磺胺低分子目标物时有较低的背景干扰,能有效吸收激光的能量并促进目标物电离,使其成为一种理想的MALDI基质材料。
-
-
-
-
-