-
公开(公告)号:CN118319296A
公开(公告)日:2024-07-12
申请号:CN202410512072.8
申请日:2024-04-26
Applicant: 中国人民解放军战略支援部队信息工程大学
IPC: A61B5/117 , A61B5/372 , A61B5/00 , G06F18/25 , G06F18/241 , G06F18/2131 , G06F18/213 , G06N3/0475 , G06N3/045 , G06N3/0464 , G06N3/0442
Abstract: 本发明公开一种基于集成学习的多维度EEG信号身份识别的方法和系统,该方法包括:将原始脑电信号转换为时频图和脑电地形图,并使用生成对抗网络进行数据增强;分别针对时频图和脑电地形图设计不同分类网络,提取时频空特征,进而进行身份识别;将不同分类网络的身份识别结果通过加权投票的集成策略进行整合,得到最终的身份识别结果。本发明充分利用了不同分类网络的优势,通过适应性的权重调整实现更为鲁棒和精确的整体分类性能,同时能够处理同一被试的不同形式数据集,从而有效学习脑电信号的时间、频谱和空间结构等多维度的特征信息,显著提升身份识别准确性。