一种基于卷积神经网络CNN的恶意软件检测方法

    公开(公告)号:CN110704840A

    公开(公告)日:2020-01-17

    申请号:CN201910854560.6

    申请日:2019-09-10

    Abstract: 本发明提出一种基于卷积神经网络CNN的恶意软件检测方法,包括:步骤1:收集训练集并进行分析,通过Cuckoo沙箱生成json格式的报告文件;步骤2:对所述json格式的报告进行向量化的处理,得到特征向量;步骤3:将所述步骤2处理后的所述特征向量作为输入传入到未训练的CNN中进行训练学习,得到训练CNN;步骤4:将待测试的软件经过和所述步骤1和所述步骤2相同的处理后,得到待测试软件的特征向量,投入所述步骤3训练好的CNN中,通过CNN模型检测,判断所述待测试软件为恶意软件或者正常软件。本申请的方法相较与其他机器学习算法和杀毒软件在检测率和精确度上都能获得更好的技术效果。

Patent Agency Ranking