-
公开(公告)号:CN114038479A
公开(公告)日:2022-02-11
申请号:CN202111323056.7
申请日:2021-11-09
Applicant: 中南林业科技大学
Abstract: 本发明公开了一种应对低信噪比的鸟鸣声识别分类方法、装置及存储介质,涉及人工智能。所述方法包括:提取待识别音频的时间序列信号;对所述时间序列信号中的采样点值按时间顺序逐帧对音频帧进行堆叠以得到第一特征矩阵;利用预设检测算法对所述第一特征矩阵进行端点检测,以得到鸟鸣声真实发声区间的第二特征矩阵;对所述鸟鸣声真实发声区间内的采样点值再次按照时间顺序逐帧对音频帧进行堆叠以得到校准后的第三特征矩阵;利用卷积神经网络对所述第三特征矩阵进行特征提取以输入门控循环网络中进行处理得到识别分类结果。利用本发明对鸟鸣声进行分类识别时,语音端点检测的准确率及对鸟鸣声分类准确度均较高。
-
公开(公告)号:CN114038479B
公开(公告)日:2024-09-27
申请号:CN202111323056.7
申请日:2021-11-09
Applicant: 中南林业科技大学
Abstract: 本发明公开了一种应对低信噪比的鸟鸣声识别分类方法、装置及存储介质,涉及人工智能。所述方法包括:提取待识别音频的时间序列信号;对所述时间序列信号中的采样点值按时间顺序逐帧对音频帧进行堆叠以得到第一特征矩阵;利用预设检测算法对所述第一特征矩阵进行端点检测,以得到鸟鸣声真实发声区间的第二特征矩阵;对所述鸟鸣声真实发声区间内的采样点值再次按照时间顺序逐帧对音频帧进行堆叠以得到校准后的第三特征矩阵;利用卷积神经网络对所述第三特征矩阵进行特征提取以输入门控循环网络中进行处理得到识别分类结果。利用本发明对鸟鸣声进行分类识别时,语音端点检测的准确率及对鸟鸣声分类准确度均较高。
-