-
公开(公告)号:CN109859139A
公开(公告)日:2019-06-07
申请号:CN201910117094.3
申请日:2019-02-15
Applicant: 中南大学
IPC: G06T5/00
Abstract: 本发明公开了一种彩色眼底图像的血管增强方法,包括获取训练数据并处理;将数据输入到生成模型中对生成模型进行训练并得到最终的生成模型;获取待增强的数据并处理;将数据输入最终的生成模型生成血管增强后的彩色眼底图像。本发明通过生成模型的建立,使用深度神经网络学习荧光造影图像的血管成像特征,可以学习到比灰度纹理等等更深层次的信息,使得眼底图的血管增强效果更佳显著,而且通过损失函数的设计,可以有效的使得生成图像和目标图像更加接近;因此,本发明方法能够有效的根据现有的彩色眼底图像生成血管增强后的彩色眼底图像,而且本发明方法的可靠性高、安全性好且适用范围广。
-
公开(公告)号:CN109859139B
公开(公告)日:2022-12-09
申请号:CN201910117094.3
申请日:2019-02-15
Applicant: 中南大学
IPC: G06T5/00
Abstract: 本发明公开了一种彩色眼底图像的血管增强方法,包括获取训练数据并处理;将数据输入到生成模型中对生成模型进行训练并得到最终的生成模型;获取待增强的数据并处理;将数据输入最终的生成模型生成血管增强后的彩色眼底图像。本发明通过生成模型的建立,使用深度神经网络学习荧光造影图像的血管成像特征,可以学习到比灰度纹理等等更深层次的信息,使得眼底图的血管增强效果更佳显著,而且通过损失函数的设计,可以有效的使得生成图像和目标图像更加接近;因此,本发明方法能够有效的根据现有的彩色眼底图像生成血管增强后的彩色眼底图像,而且本发明方法的可靠性高、安全性好且适用范围广。
-