-
公开(公告)号:CN110858225B
公开(公告)日:2022-06-17
申请号:CN201810914247.2
申请日:2018-08-13
Applicant: 中南大学
IPC: G06F16/901 , G06F16/904
Abstract: 本发明公开了一种基于模块度的动态网络边采样方法,包括:初始化接受边集合、拒绝边集合、接收边顶点集合并获取图流;将所述第一条边加入至接受边集合并按照时间序列将图流中的下一条边作为待处理的边,再获取当前的社区数据集合并进行社区划分以及计算出模块度;将图流上的滑动窗口移动至待处理的边后再加入待处理的边重构新社区并计算出模块度;计算两个模块度的差值的绝对值并判断是否大于或等于预设阈值,若是则将所述待处理的边加入至接受边集合;再重复上述步骤继续处理下一条边直至所有边均被处理完;均处理完后依据最新更新的接受边集合和接受边顶点集合生成精简图流。通过该方法能够保留原始动态网络特性同时减少视图中的视觉混杂程度。
-
公开(公告)号:CN109101628B
公开(公告)日:2021-11-26
申请号:CN201810922471.6
申请日:2018-08-14
Applicant: 中南大学
IPC: G06F16/958
Abstract: 本发明公开了一种量化评价MSV的边级视觉混杂程度指标计算方法,包括以下步骤:1)获取MSV中的任意一条边e,并计算其不可区分的像素距离值IPD,从边e的中心位置向左右方向分别扩展IPD的宽度,形成不可区分的像素区域IPA;2)将IPA中与边e相互交错的边加入交错边集合;3)对交错边集合按节点顺序进行分解,得到若干等距且相邻的节点对集合,利用并集操作消除重叠覆盖,得到消除重叠覆盖的交错边集合;4)根据消除覆盖的交错边集合与节点对集合计算边e的视觉混杂程度指标。本发明对MSV中边的视觉混杂程度进行定量评价,有助于为后续边采样工作提供可靠依据,进而有助于减少MSV中的视觉混杂程度,提高其可读性。
-
公开(公告)号:CN108090145B
公开(公告)日:2021-11-02
申请号:CN201711282520.6
申请日:2017-12-07
Applicant: 中南大学
IPC: G06F16/901 , G06F16/904
Abstract: 本发明提供一种动态网络边采样及其可视化方法,包含以下步骤:1)选取动态网络中任意一组节点对,利用核密度估计方法计算该对节点间边的概率密度函数;2)根据节点对的边的概率密度函数构建合适的参考分布函数,近似表示真实的概率密度分布;3)针对目标节点对的每一条边,使用0‑1均匀分布分别获得一个随机值,并计算该边所处时刻概率密度与第二步构建的参考分布函数值的比值,比较该比值与随机值的大小关系,判断是否接受该样本;4)遍历动态网络中的所有节点对,重复步骤1)~3),获得动态网络经采样后的边样本集。本发明能够在降低动态网络的规模的同时,还能基本保持原始动态网络的结构特征。
-
公开(公告)号:CN110858225A
公开(公告)日:2020-03-03
申请号:CN201810914247.2
申请日:2018-08-13
Applicant: 中南大学
IPC: G06F16/901 , G06F16/904
Abstract: 本发明公开了一种基于模块度的动态网络边采样方法,包括:初始化接受边集合、拒绝边集合、接收边顶点集合并获取图流;将所述第一条边加入至接受边集合并按照时间序列将图流中的下一条边作为待处理的边,再获取当前的社区数据集合并进行社区划分以及计算出模块度;将图流上的滑动窗口移动至待处理的边后再加入待处理的边重构新社区并计算出模块度;计算两个模块度的差值的绝对值并判断是否大于或等于预设阈值,若是则将所述待处理的边加入至接受边集合;再重复上述步骤继续处理下一条边直至所有边均被处理完;均处理完后依据最新更新的接受边集合和接受边顶点集合生成精简图流。通过该方法能够保留原始动态网络特性同时减少视图中的视觉混杂程度。
-
公开(公告)号:CN109101628A
公开(公告)日:2018-12-28
申请号:CN201810922471.6
申请日:2018-08-14
Applicant: 中南大学
IPC: G06F17/30
Abstract: 本发明公开了一种量化评价MSV的边级视觉混杂程度指标计算方法,包括以下步骤:1)获取MSV中的任意一条边e,并计算其不可区分的像素距离值IPD,从边e的中心位置向左右方向分别扩展IPD的宽度,形成不可区分的像素区域IPA;2)将IPA中与边e相互交错的边加入交错边集合;3)对交错边集合按节点顺序进行分解,得到若干等距且相邻的节点对集合,利用并集操作消除重叠覆盖,得到消除重叠覆盖的交错边集合;4)根据消除覆盖的交错边集合与节点对集合计算边e的视觉混杂程度指标。本发明对MSV中边的视觉混杂程度进行定量评价,有助于为后续边采样工作提供可靠依据,进而有助于减少MSV中的视觉混杂程度,提高其可读性。
-
公开(公告)号:CN111143544B
公开(公告)日:2023-06-16
申请号:CN201911338681.1
申请日:2019-12-23
Applicant: 中南大学
IPC: G06F16/335 , G06F18/2411 , G06N3/0464 , G06N3/08
Abstract: 本发明提供了一种基于神经网络的柱形图信息提取方法、装置、电子设备及计算机可读存储介质,包括文本信息提取步骤/模块、数值信息提取步骤/模块和信息恢复步骤/模块。文本信息提取步骤/模块先使用目标检测模型对文本信息同时地进行定位和分类,然后通过光学字符识别器对文本信息进行字符识别,得到文本信息提取结果。数值信息提取步骤/模块通过编码器‑解码器架构来提取归一化的柱形值,并通过注意力模型来提高提取精确度。信息恢复步骤/模块先使用RANSAC回归对文本提取模块的结果进行错误过滤,然后恢复数值提取模块的归一化柱形值。本发明可以高效且精确地提取柱形图中的信息。
-
公开(公告)号:CN111143544A
公开(公告)日:2020-05-12
申请号:CN201911338681.1
申请日:2019-12-23
Applicant: 中南大学
IPC: G06F16/335 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明提供了一种基于神经网络的柱形图信息提取方法、装置、电子设备及计算机可读存储介质,包括文本信息提取步骤/模块、数值信息提取步骤/模块和信息恢复步骤/模块。文本信息提取步骤/模块先使用目标检测模型对文本信息同时地进行定位和分类,然后通过光学字符识别器对文本信息进行字符识别,得到文本信息提取结果。数值信息提取步骤/模块通过编码器-解码器架构来提取归一化的柱形值,并通过注意力模型来提高提取精确度。信息恢复步骤/模块先使用RANSAC回归对文本提取模块的结果进行错误过滤,然后恢复数值提取模块的归一化柱形值。本发明可以高效且精确地提取柱形图中的信息。
-
公开(公告)号:CN108090145A
公开(公告)日:2018-05-29
申请号:CN201711282520.6
申请日:2017-12-07
Applicant: 中南大学
IPC: G06F17/30
Abstract: 本发明提供一种动态网络边采样及其可视化方法,包含以下步骤:1)选取动态网络中任意一组节点对,利用核密度估计方法计算该对节点间边的概率密度函数;2)根据节点对的边的概率密度函数构建合适的参考分布函数,近似表示真实的概率密度分布;3)针对目标节点对的每一条边,使用0-1均匀分布分别获得一个随机值,并计算该边所处时刻概率密度与第二步构建的参考分布函数值的比值,比较该比值与随机值的大小关系,判断是否接受该样本;4)遍历动态网络中的所有节点对,重复步骤1)~3),获得动态网络经采样后的边样本集。本发明能够在降低动态网络的规模的同时,还能基本保持原始动态网络的结构特征。
-
-
-
-
-
-
-