-
公开(公告)号:CN113054210B
公开(公告)日:2024-04-16
申请号:CN202110302758.0
申请日:2021-03-22
Applicant: 中南大学
Abstract: 本发明公开了一种氧还原铁–氮化四铁@单原子铁和氮共掺杂无定形碳‑炭黑复合催化剂及其制备和应用,该催化剂由单质铁颗粒和γ′相氮化四铁分散在单原子铁和氮共掺杂碳材料中构成;所述单原子铁和氮共掺杂碳材料由单原子铁和氮共掺杂无定形碳与单原子铁和氮共掺杂炭黑复合构成;其制备方法是将铁盐、含氮有机小分子化合物和碳黑混合后,置于保护气氛中,进行两段焙烧处理,即得;该催化剂制备工艺简单、操作方便,成本低,有利于大规模生产;所制备的复合催化剂应用于燃料电池的氧还原过程,具有活性高和稳定性好等特点,综合性能超过了20wt%Pt/C商用催化剂,展现出良好的应用前景。
-
公开(公告)号:CN109524678B
公开(公告)日:2020-05-15
申请号:CN201910063039.0
申请日:2019-01-23
Applicant: 中南大学
Abstract: 本发明公开了一种析氧铁钴合金‑铁酸钴/氮掺杂纳米碳管复合催化剂及其制备和应用;复合催化剂由CoFe‑CoFe2O4颗粒与N掺杂纳米碳管复合构成。其制备方法为将钴盐溶液与2‑甲基咪唑溶液混合反应,得到金属有机框架化合物ZIF‑67;将金属有机框架化合物ZIF‑67分散至含铁盐和双氰胺的混合溶液中,搅拌反应后,蒸发溶剂,得到前驱体;将前驱体经过热处理,即得CoFe‑CoFe2O4/N‑CNTs复合催化剂。该制备方法简单,成本低,有利于工业化生产;所制备的CoFe‑CoFe2O4/N‑CNTs复合催化剂应用于电催化分解水或金属‑空气二次电池等可再生能源的储存和转换系统,其综合性能接近于RuO2商用催化剂,展现出良好的应用前景。
-
公开(公告)号:CN107051559B
公开(公告)日:2019-08-16
申请号:CN201710318217.0
申请日:2017-05-08
Applicant: 中南大学
IPC: B01J27/185 , B01J27/24 , H01M4/90 , C25B1/04 , C25B11/06
CPC classification number: Y02E60/366
Abstract: 本发明公开了一种氧还原和析氧Co2P@NPC双功能复合催化剂及其制备方法和应用;所述复合催化剂由N和P共掺杂碳层包覆Co2P纳米棒和/或纳米颗粒构成,其制备方法为将含醋酸钴、浓磷酸和尿素的水溶液蒸发、烘干后,置于保护气氛下,在高温热处理,即得。该制备方法简单、成本低,有利于工业化生产;所制备的Co2P@NPC复合催化剂应用于燃料电池及水分解作为氧还原和析氧双功能催化剂,具有活性高和稳定性好的特点,接近于商用贵金属20wt%Pt/C和RuO2催化剂的催化性能,展现出很好的应用前景。
-
公开(公告)号:CN105977501B
公开(公告)日:2018-10-19
申请号:CN201610332586.0
申请日:2016-05-19
Applicant: 中南大学
IPC: H01M4/90
Abstract: 本发明公开了一种高性能氧还原MnO2‑Mn3O4/碳纳米管复合催化剂及其制备和应用;所述复合催化剂由MnO2纳米棒和Mn3O4纳米颗粒共同镶嵌在碳纳米管网络的网孔中和/或沉积在碳纳米管表面构成,其制备方法为将高锰酸钾、氯化铵和氧化碳纳米管溶解或分散于水中,进行水热反应,水热反应产物经过冷却、抽滤、洗涤及干燥,即得;该制备方法简单,有利于工业化生产;所制备的MnO2‑Mn3O4/碳纳米管复合催化剂应用于燃料电池,具有活性高和稳定性好的特点,相对于20wt%Pt/C商用催化剂,具有接近的综合性能,展现出良好的应用前景。
-
公开(公告)号:CN108511723A
公开(公告)日:2018-09-07
申请号:CN201810303742.X
申请日:2018-04-03
Applicant: 中南大学
Abstract: 本发明公开了一种CoMn2O4/NC/S复合材料及其制备方法和作为锂硫二次电池正极的应用。CoMn2O4/NC/S复合材料由锰酸钴(CoMn2O4)纳米颗粒锚钉在氮掺杂石墨化多孔碳(NC)上再与硫复合而成,其制备方法:将金属有机骨架材料ZIF-67焙烧处理,得到Co-N-C复合材料,再与锰盐及高锰酸盐进行水热反应,得到CoMn2O4/NC复合材料;进一步与硫复合,即得CoMn2O4/NC/S复合材料。该复合材料能对锂硫二次电池充放电过程中形成的多硫化物同时进行强烈的化学吸附和物理吸附,能有效抑制多硫化物的溶解流失,减少穿梭效应的发生,提高了锂硫二次电池的寿命。同时该方法用廉价低毒的Mn部分替代昂贵有毒的Co应用于锂硫二次电池,具有重要的创新和实践意义。
-
公开(公告)号:CN107051559A
公开(公告)日:2017-08-18
申请号:CN201710318217.0
申请日:2017-05-08
Applicant: 中南大学
IPC: B01J27/185 , B01J27/24 , H01M4/90 , C25B1/04 , C25B11/06
CPC classification number: Y02E60/366 , B01J27/24 , B01J27/1853 , C25B1/04 , C25B11/04 , H01M4/9083
Abstract: 本发明公开了一种氧还原和析氧Co2P@NPC双功能复合催化剂及其制备方法和应用;所述复合催化剂由N和P共掺杂碳层包覆Co2P纳米棒和/或纳米颗粒构成,其制备方法为将含醋酸钴、浓磷酸和尿素的水溶液蒸发、烘干后,置于保护气氛下,在高温热处理,即得。该制备方法简单、成本低,有利于工业化生产;所制备的Co2P@NPC复合催化剂应用于燃料电池及水分解作为氧还原和析氧双功能催化剂,具有活性高和稳定性好的特点,接近于商用贵金属20wt%Pt/C和RuO2催化剂的催化性能,展现出很好的应用前景。
-
公开(公告)号:CN105977501A
公开(公告)日:2016-09-28
申请号:CN201610332586.0
申请日:2016-05-19
Applicant: 中南大学
IPC: H01M4/90
CPC classification number: H01M4/9016 , H01M4/9083
Abstract: 本发明公开了一种高性能氧还原MnO2‑Mn3O4/碳纳米管复合催化剂及其制备和应用;所述复合催化剂由MnO2纳米棒和Mn3O4纳米颗粒共同镶嵌在碳纳米管网络的网孔中和/或沉积在碳纳米管表面构成,其制备方法为将高锰酸钾、氯化铵和氧化碳纳米管溶解或分散于水中,进行水热反应,水热反应产物经过冷却、抽滤、洗涤及干燥,即得;该制备方法简单,有利于工业化生产;所制备的MnO2‑Mn3O4/碳纳米管复合催化剂应用于燃料电池,具有活性高和稳定性好的特点,相对于20wt%Pt/C商用催化剂,具有接近的综合性能,展现出良好的应用前景。
-
公开(公告)号:CN103301846A
公开(公告)日:2013-09-18
申请号:CN201310291375.3
申请日:2013-07-11
Applicant: 中南大学
IPC: B01J23/847 , B01D53/76 , B01D53/86 , B01D53/44 , C02F1/30 , C02F101/30
CPC classification number: Y02A50/2327
Abstract: 本发明公开了一种InVO4·Cu2O·TiO2三元复合物及其制备方法和应用,其制备方法为:先通过水热法制备InVO4,再通过溶胶-凝胶法制备InVO4·TiO2二元复合物,最后通过沉淀和还原过程制备InVO4·Cu2O·TiO2三元复合物;该制备方法简单、成本低,有利于工业化生产;所制备的三元复合物作为可见光催化剂在可见光区有较高的催化活性,且光利用率高,可应用于催化溶液中有机污染物或空气中挥发性有机污染物的降解等,特别适用于溶液中有机污染物的降解。
-
公开(公告)号:CN112864405B
公开(公告)日:2022-05-06
申请号:CN202110008483.X
申请日:2021-01-05
Applicant: 中南大学
Abstract: 本发明公开了一种高性能氧还原钴@氮掺杂石墨晶纳米带‑科琴炭黑复合催化剂及其制备方法和应用,该催化剂由单质钴颗粒镶嵌在氮掺杂碳材料中构成;所述氮掺杂碳材料由氮掺杂石墨晶纳米带与氮掺杂科琴炭黑原位复合构成;其制备方法是将钴盐、含氮有机小分子化合物和碳黑混合后,置于保护气氛中,进行两段焙烧处理,即得;该催化剂制备工艺简单、操作方便,成本低,有利于大规模生产;所制备的复合催化剂应用于燃料电池的氧还原过程,具有活性高和稳定性好等特点,综合性能超过了20wt%Pt/C商用催化剂,展现出良好的应用前景。
-
公开(公告)号:CN112919496B
公开(公告)日:2022-03-29
申请号:CN202110119259.8
申请日:2021-01-28
Applicant: 中南大学
Abstract: 本发明公开了一种高分散性普鲁士蓝纳米粒子/高结晶碳复合材料及其制备方法。将铁盐溶于丙酮后,加入固体氢氧化钠混匀,静置反应,得到含铁碳量子点;将含铁碳量子点与含氮有机小分子化合物置于保护气氛下进行焙烧处理,焙烧产物经过洗涤和干燥,即得高分散性普鲁士蓝纳米粒子/高结晶碳复合材料。该复合材料中普鲁士蓝纳米粒子与三维碳纳米花原位复合,普鲁士蓝纳米粒子分散均匀且牢固地镶嵌在三维碳纳米花上,稳定性好,不易脱落,且具有三维结构的碳纳米花结晶度高,能够提供更好的导电性,该方法制备过程简单,废液排放量少,成本低廉,满足工业生产要求。
-
-
-
-
-
-
-
-
-