一种弱监督学习的病理全片图像类别推断方法及其系统

    公开(公告)号:CN110751172A

    公开(公告)日:2020-02-04

    申请号:CN201910853703.1

    申请日:2019-09-10

    Applicant: 中南大学

    Abstract: 本发明公开了一种弱监督学习的病理全片图像类别推断方法及其系统,通过将病理全片图像切割成包含不重叠图像块的二维网格图,并在所述二维网格图上使用每个图像块的类别概率向量,构建三维地形轮廓图,再获取所述三维地形轮廓图中的最显著特征峰,根据所述最显著特征峰和\或所述最显著特征峰的特征指标,计算出与所述三维地形轮廓图对应的病理全片图像的类别概率值,并将所述病理全片图像的类别概率值与预设的分类阈值进行对比来判断所述病理全片图像上包含所述三维地形轮廓图的类别,相比起现有技术而言,能依据临床规则,能有效避免假阳性错误,准确的判断出所述病理全片图像的类别。

    一种弱监督学习的病理全片图像类别推断方法及其系统

    公开(公告)号:CN110751172B

    公开(公告)日:2023-05-19

    申请号:CN201910853703.1

    申请日:2019-09-10

    Applicant: 中南大学

    Abstract: 本发明公开了一种弱监督学习的病理全片图像类别推断方法及其系统,通过将病理全片图像切割成包含不重叠图像块的二维网格图,并在所述二维网格图上使用每个图像块的类别概率向量,构建三维地形轮廓图,再获取所述三维地形轮廓图中的最显著特征峰,根据所述最显著特征峰和\或所述最显著特征峰的特征指标,计算出与所述三维地形轮廓图对应的病理全片图像的类别概率值,并将所述病理全片图像的类别概率值与预设的分类阈值进行对比来判断所述病理全片图像上包含所述三维地形轮廓图的类别,相比起现有技术而言,能依据临床规则,能有效避免假阳性错误,准确的判断出所述病理全片图像的类别。

Patent Agency Ranking